Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 23 №1 - Приложение 2021 год - Нефрология и диализ

Антиретровирусная терапия и почки: Баланс пользы и риска у пациентов с ВИЧ-инфекцией. Обзор литературы


Ющук Н.Д. Волгина Г.В. Гаджикулиева М.М.

DOI: 10.28996/2618-9801-2021-1suppl-74-98

Аннотация: Достижения в фармакологическом лечении ВИЧ-инфекции продолжаются быстрыми темпами. В настоящее время доступны более чем 30 антиретровирусных препаратов (АРВП) и их сочетаний, применение которых может подавить вирусную нагрузку ВИЧ до незаметного уровня и увеличить продолжительность жизни ВИЧ-инфицированных людей. Там, где пациенты имеют доступ к лечению, заболеваемость и смертность все чаще обусловливаются сопутствующими заболеваниями, не связанными с ВИЧ, которые могут наблюдаться раньше, чем при соответствующем возрасту контроле. Хотя большинство АРВП относительно не нефротоксичны, может иметь место повреждение почек, связанное с лекарствами, и его необходимо отличать от прогрессирования заболеваний почек, связанных с ВИЧ, другими инфекциями (например, гепатитом С) или заболеваниями почек, не связанными с ВИЧ-инфекцией и ее лечением. Наиболее распространенные нефротоксические эффекты АРВП включают острое повреждение почек, тубулоинтерстициальный нефрит, кристалл-индуцированную обструкцию и почечнокаменную болезнь, вторичную по отношению к применению ингибиторов протеаз (главным образом индинавира и атазанавира), повреждение проксимальных канальцев, связанное с нуклеозидным ингибитором обратной транскриптазы ВИЧ - тенофовиром. Наконец, неспецифические метаболические осложнения могут увеличить риск развития сосудистой хронической болезни почек (ХБП) у пациентов, получающих антиретровирусную терапию (АРТ). Нарушение функции почек обычно развивается в условиях многократного лечения и не всегда может быть отнесено к конкретному препарату, поэтому у пациентов с ВИЧ, получающих любые АРВП, следует регулярно контролировать функцию почек. Учитывая преимущества АРT, страх перед нефротоксическими эффектами никогда не является веской причиной для отказа от ее применения. Идентификация пациентов с уже существующей ХБП, которые подвергаются повышенному риску повреждения почек, позволяет проводить соответствующую модификацию дозы, тщательный мониторинг и избегать или осторожно использовать потенциально нефротоксичные препараты. Учитывая распространенность ХБП, широкий спектр возможных взаимодействий между ВИЧ, АРВП, ХБП и ее лечением, нефрологам необходимо знать о возможном влиянии комбинированной АРТ на почки. В обзоре рассматриваются вопросы, касающиеся механизмов, факторов риска и клинических проявлений повреждения почек медикаментозными средствами для оценки клинической ситуации при проведении терапии антиретровирусными препаратами и обсуждаются меры профилактики их нефротоксического действия.

Для цитирования: Ющук Н.Д., Волгина Г.В., Гаджикулиева М.М. Антиретровирусная терапия и почки: Баланс пользы и риска у пациентов с ВИЧ-инфекцией. Обзор литературы. Нефрология и диализ. 2021. 23(1):74-98. doi: 10.28996/2618-9801-2021-1suppl-74-98


Весь текст



Ключевые слова: ВИЧ-инфекция, повреждение почек, антиретровирусные препараты, антиретровирусная терапия, нефротоксичность, факторы риска, профилактика, HIV-infection, renal damage, review, antiretroviral drugs, antiretroviral therapy, nephrotoxicity, risk factors, preventive measures

Список литературы:
  1. WHO. Global Health Sector Strategy for the Elimination of HIV, 2016-2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/255763/WHO-HIV-2016.05.
  2. WHO. Data and Statistics. Available online: http://www.who.int/hiv/data/en/ (accessed on 9 July 2019).
  3. ФНМЦ по профилактике и борьбе со СПИДом при Центральном НИИ эпидемиологии Роспотребнадзора: https://vademec.ru/news/2020/02/26/rospotrebnadzor-v-2019-godu-ot-vich-assotsiirovannykh-zabolevaniy-umerli-33-6-tysyachi-rossiyan/
  4. Беляков Н.А., Рассохин В.В. Коморбидные состояния при ВИЧ-инфекции. Часть 1. Основы проблемы. СПб.: Балтийский медицинский образовательный центр, 2018. 184 с.
  5. Gueler A., Moser A., Calmy A. et al. Swiss HIV Cohort Study, Swiss National Cohort. Life expectancy in HIV-positive persons in Switzerland: Matched comparison with general population. AIDS Lond. Engl. 2017; 31: 427-436. doi: 10.1097/QAD.0000000000001335.
  6. Liyanage T., Ninomiya T., Jha V. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. The Lancet. 2015; 385(9981):1975-82.
  7. Antiretroviral Therapy Cohort Collaboration. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV. 2017; 4:e349-e356.
  8. Sabin C.A. Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy. BMC Med. 2013; 11,251.
  9. Jotwani V., Li Y., Grunfeld C. et al. Risk factors for ESRD in HIV-infected individuals: traditional and HIV-related risk factors. Am J Kidney Dis. 2012; 59: 628-635.
  10. Ryom L., Mocroft A., Kirk O. еt al. D:A: D Study Group. Association between antiretroviral exposure and renal impairment among HIV-positive persons with normal baseline renal function: the D: A: D study. J Infect Dis. 2013; 207: 1359-69.
  11. Bertoldi A., De Crignis E., Miserocchi A. et al. HIV and kidney: a dangerous liaison. New Microbiol. 2017; 40: 1-10.
  12. HIV 2015/2016. Hoffman C., Rockstroh J. Hamburg: Medicin Focus Verlag, 2015. 756 s. URL: www.hivbook.com.
  13. Lucas G.M., Ross M.J., Stock P.G. et al. Clinical practice guidelines for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014; 59: e96-138. doi: 10.1093/cid/ciu617.
  14. Swanepoel C.R., Atta M.G., D’Agati V.D. et al. Conference Participants: Kidney disease in the setting of HIV infection: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2018; 93: 545-559.
  15. Milburn J., Jones R., Levy J.B. Renal effect of novel antiretroviral drugs. Nephrol Dial Transplant. 2017; 32:434-439.
  16. AIDSinfo. Guidelines for the use of Antiretroviral Agents in HIV-1 infected Adults and Adolescents 2016 16-th November 2016. https://aidsinfo.nih.gov/contentfiles/lvguidelines/AA_Recommendations.pdf.
  17. ВИЧ-инфекция и СПИД: национальное руководство. Под ред. В.В. Покровского. М.: ГЭОТАР-Медиа, 2020. 696 с.
  18. EACS European AIDS Clinical Society Guidelines, version 9.1. October 2018. URL: http: // www.eacsociety.org.
  19. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Department of Health and Human Services. October 25. 2018. URL: http: // AIDSinfo.nih.gov.
  20. Atta M.G., De Seigneux S., Lucas G.M. Clinical Pharmacology in HIV Therapy. Clin J Am Soc Nephrol. 2019: 14:435-444. doi: https://doi.org/10.2215/CJN.02240218
  21. Izzedine H., Harris M., Perazella M. et al. The nephrotoxic effects of HAART. Nat. Rev. Nephrol. 2009; 5: 563-573.
  22. Ryom L., Mocroft A., Lundgren J. HIV therapies and the kidney: some good, some not so good? Curr HIV/AIDS Rep. 2012; 9: 111-20.
  23. Volberding P.A., Deeks S.G. Antiretroviral therapy and management of HIV infection. Lancet. 2010; 376: 49-62.
  24. Pedersen K.K., Pedersen M., Troseid M. et al. Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. 2013; 64: 425-433.
  25. Guaraldi G., Orlando G., Zona S. еt al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011; 53: 1120-6.
  26. Halle M.P., Oumarou M., Kaze Folefack F. et al. Prevalence and associated factors of chronic kidney disease among patients infected with human immunodeficiency virus in Cameroon. Iran J Kidney Dis. 2018; 12: 268-74.
  27. Mdodo R., Frazier E.L., Dube S.R. et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: cross-sectional surveys. Ann Intern Med. 2015; 162: 335-344.
  28. James M.T., Grams M.E., Woodward M. et al. A meta-analysis of the association of estimated GFR, albuminuria, diabetes mellitus, and hypertension with acute kidney injury. Am J Kidney Dis. 2015; 66: 602-612.
  29. Rho M., Perazella M. A. Nephrotoxicity associated with antiretroviral therapy in HIV infected patients. Curr. Drug Saf. 2007; 2: 147-154.
  30. Doshi S. Ucanda M., Hart R. et al. Incidence and Risk Factors for Renal Disease in an Outpatient Cohort of HIV-Infected Patients on Antiretroviral Therapy. Kidney Int Rep. 2019; 4: 1075-1084. doi.org/10.1016/j.ekir.2019.04.024.
  31. Caires R.A., Silva V.T., Burdmann E. et al. Drug-induced acute kidney injury. In: Ronco C, Bellomo R, Kellum JA, Ricci Z, eds. Critical care nephrology. 3rd ed. Philadelphia: Elsevier; 2019. p. 214-21.
  32. Yombi J.C., Pozniak A, Boffito M, еt al. Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS. 2014; 28: 621-32.
  33. Post F. Adverse events: ART and the kidney: alterations in renal function and renal toxicity. J Int AIDS Soc. 2014; 17: 19513.
  34. Jao J., Wyatt C. Antiretroviral medications: adverse effects on the kidney. Adv Chronic Kidney Dis. 2010; 17(1):72-82.
  35. Lyseng-Williamson K.A., Reynolds N.A., Plosker G.L. Tenofovir disoproxil fumarate: A review of its use in the management of HIV infection. Drugs. 2005; 65: 413-432.
  36. Smith P.F., DiCenzo R., Morse G.D. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet. 2001; 40: 893-905.
  37. Scherzer R., Estrella M., Li Y. et al. Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS. 2012; 26: 867-875.
  38. Клиническая фармакология: учебник. Под ред. В.Г. Кукеса. М.: ГЕОТАР-Медиа, 2008. 1056 с.
  39. Arakawa H., Washio I., Matsuoka N. et al. Usefulness of kidney slices for functional analysis of apical reabsorptive transporters. Sci Rep. 2017; 7:12814. https://doi.org/10.1038/s41598-017-12828-z
  40. Breda P.C., Wiech T., Meyer-Schwesinger C. et al. Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4+ T cell responses. Am J Physiol Renal Physiol. 2019; 317(1):F77-F89. https://doi.org/10.1152/ajprenal.00427.2018
  41. Nigam SK., Wu W., Bush K.T. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol. 2015; 10(11):2039-2049. https://doi.org/10.2215/cjn.02440314
  42. Nieskens T.T.G., Peters J.G.P., Schreurs M.J. et al. A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. AAPS J. 2016; 18:465-475. https://doi.org/10.1208/s12248-016-9871-8
  43. Aschauer L., Limonciel A., Wilmes A. et al. Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: a transcriptomic study. Toxicol In Vitro. 2015; 30:106-116. https://doi.org/10.1016/J.TIV.2014.10.005
  44. Czerniecki S.M., Cruz N.M., Harder J.L. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell. 2018; 22(6):929.e4-940.e4. https://doi.org/10.1016/j.stem.2018.04.022
  45. Perazella M.A. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4(7):1275-83.
  46. Perazella M.A. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018; 13(12):1897-908.
  47. Siddama A, Suneel I.M. Drug Induced Kidney Disease. Open Acc J of Toxicol. 2017; 2(1): 555576. DOI: 10.19080/ OAJT.2017.02.555576.
  48. Ciarimboli G. Individual P.K. C phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J. Am. Soc. Nephrol. 2005; 16: 1562-1570.
  49. Dasgupta A., Okhuysen P.C. Pharmacokinetic and other drug interactions in patients with AIDS. Ther Drug Monit. 2001; 23: 591-605.
  50. Ibrahim F., Naftalin C., Cheserem E. et al. Immunodeficiency and renal impairment are risk factors for HIV-associated acute renal failure. AIDS. 2010; 24: 2239-2244.
  51. Hsu C.Y., Ordonez J.D., Chertow G.M. et al. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008; 74: 101-107.
  52. Lescure F., Flateau C., Pacanowski J. et al. HIV-associated kidney glomerular diseases: changes with time and HAART. Nephrol Dial Transplant. 2012; 27: 2349-2355.
  53. Ross M.J. Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int. 2014; 86: 266-74.
  54. Barnett L.M.A., Cummings B.S. Nephrotoxicity and renal pathophysiology: a contemporary perspective. Toxicol Sci. 2018; 164:379-390. https://doi.org/10.1093/toxsci/kfy159
  55. Andreucci M., Faga T., Pisani A. et al. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017; 39:1-8. https://doi.org/10.1016/j.ejim.2016.12.001
  56. Barnett L.M.A., Cummings B.S. Nephrotoxicity and renal pathophysiology: a contemporary perspective. Toxicol Sci. 2018; 164:379-390. https://doi.org/10.1093/toxsci/kfy159
  57. Caires R.A., Silva V.T., Burdmann E. et al. Drug-induced acute kidney injury. In: Ronco C, Bellomo R, Kellum JA, Ricci Z, eds. Critical care nephrology. 3rd ed. Philadelphia: Elsevier; 2019. P.214-21
  58. Roe J., Campbell L. J., Ibrahim F. et al. HIV care and the incidence of acute renal failure. Clin. Infect. Dis. 2008; 47: 242-249.
  59. Wyatt C.M., Arons R.R., Klotman P.E. et al. Acute renal failure in hospitalized patients with HIV: risk factors and impact on in-hospital mortality. AIDS 2006; 20(4): 561-565.
  60. Peraldi M. N., Maslo C., Akposso K. et al. Acute renal failure in the course of HIV infection: a single-institution retrospective study of ninety-two patients and sixty renal biopsies. Nephrol. Dial. Transplant.1999; 14: 1578-1585.
  61. Overton E.T., Nurutdinova D., Freeman J. et al. Factors associated with renal dysfunction within an urban HIV-infected cohort in the era of highly active antiretroviral therapy. HIV Med. 2009; 10: 343-350.
  62. Reiter W.J., Schon-Pernerstorfer H., Dorfinger K. et al. Frequency of urolithiasis in individuals seropositive for human immunodeficiency virus treated with indinavir is higher than previously assumed. J Urol. 1999; 161: 1082-1084.
  63. Jafari A., Khalili H., Dashti-Khavidaki S. Tenofovir-induced nephrotoxicity: incidence, mechanism, risk factors, prognosis and proposed agents for prevention. Eur J Clin Pharmacol. 2014; 70(9):1029-1040. https://doi.org/10.1007/s00228-014-1712-z
  64. Jaradat M., Phillips C., Yum M.N. et al. Acute tubulointerstitial nephritis attributable to indinavir therapy. Am J Kidney Dis. 2000; 35: 16.
  65. Sarcletti M., Petter A., Romani N. et al. Pyuria in patients treated with indinavir is associated with renal dysfunction. Clin Nephrol. 2000; 54: 261-270.
  66. Cattelan A.M., Trevenzoli M., Naso A. et al. Severe hypertension and renal atrophy associated with indinavir. Clin Infect Dis. 2000; 30: 619-21.
  67. Chan-Tack K.M., Truffa M.M., Struble K.A. et al. Atazanavir-associated nephrolithiasis: cases from the US Food and Drug Administration’s Adverse Event Reporting System. AIDS. 2007; 21 (9): 1215-1218.
  68. Krishnan M., Nair R., Haas M. et al. Acute renal failure in an HIV-positive50-year-old man. Am. J. Kidney Dis. 2000; 36: 1075-1078.
  69. Angel-Moreno-Maroto A., Suarez-Castellano L., Hernandez-Cabrera M. et al. Severe efavirenz-induced hypersensitivity syndrome (not-DRESS) with acute renal failure. J. Infect. 2006; 52: 39-40.
  70. Brewster U. C., Perazella M. A. Acute interstitial nephritis associated with atazanavir, a new protease inhibitor. Am. J. Kidney Dis. 2004; 44: 81-84.
  71. Hara M., Suganuma A., Yanagisawa N. et al. Atazanavir nephrotoxicity. Clin Kidney J. 2015; 8(2):137-142. https://doi.org/10.1093/ckj/sfv015
  72. Jose S., Nelson M., Phillips A. et al. Improved kidney function in patients who switch their protease inhibitor from atazanavir or lopinavir to darunavir. AIDS. 2017; 31: 485-492.
  73. Shafi T., Choi M.J., Racusen L.C. et al. Ritonavir-induced acute kidney injury: kidney biopsy findings and review of literature. Clin Nephrol. 2011; 75: 60-64.
  74. Chughlay M.F., Njuguna C., Cohen K. et al. Acute interstitial nephritis caused by lopinavir/ritonavir in a surgeon receiving antiretroviral postexposure prophylaxis. AIDS. 2015; 29: 503-504.
  75. Knudtson E., Para M., Boswell H. et al. Drug rash with eosinophilia and systemic symptoms syndrome and renal toxicity with a nevirapine-containing regimen in a pregnant patient with human immunodeficiency virus. Obstet Gynecol. 2003; 101: 1094-1097.
  76. Zimmermann A.E., Pizzoferrato T., Bedford J. et al. Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis. 2006; 42 (2): 283-290.
  77. Verhelst D., Monge M., Meynard J.L. et al. Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002; 40 (6): 1331-1333.
  78. Waheed S., Attia D., Estrella M.M. et al. Proximal tubular dysfunction and kidney injury associated with tenofovir in HIV patients: a case series. Clin Kidney J. 2015; 8: 420-425.
  79. Aloy B., Tazi I., Bagnis C. еt al. Is tenofovir alafenamide safer than tenofovir disoproxil fumarate for the kidneys? AIDS Rev. 2016; 18(4): 184-92.
  80. Ray A.S., Fordyce M.W., Hitchcock M.J. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antiviral Res. 2016; 125:63-70.
  81. Izzedine H., Hulot J.S., Vittecoq D. et al. Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naive HIV-1- infected patients: data from a double-blind randomized active- controlled multicentre study. Nephrol Dial Transplant. 2005; 20 (4): 743-746.
  82. Maggi P., Montinaro V., Mussini C. et al. Novel antiretroviral drugs and renal function monitoring of HIV patients. AIDS Rev. 2014; 16: 144-151.
  83. Harris M. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Expert Opin. Drug. Saf. 2008; 7: 389-400.
  84. Gallant J.E., Staszewski S., Pozniak A. et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004; 292 (2): 191-201.
  85. Crane H.M., Kestenbaum B., Harrngton R.D. et al. Amprenavir and didanosine are associated with declining kidney function among patients receiving tenofovir. AIDS. 2007; 21(11): 1431-1439.
  86. Mocroft A., Lundgren J.D., Ross M. et al. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international cohort study. Lancet HIV. 2016; 3:e23-32.
  87. Tanuma J., Jiamsakul A., Makane A. et al. Renal dysfunction during tenofovir use in a regional cohort of HIV-infected individuals in the Asia-Pacific. PLoS One. 2016; 11: e0161562.
  88. Joshi M. K., Liu H. H. Acute rhabdomyolysis and renal failure in HIV-infected patients: risk factors, presentation, and pathophysiology.AIDS Patient Care STDs. 2000; 14: 541-548.
  89. Castro J.G., Gutierrez L. Rhabdomyolysis with acute renal failure probably related to the interaction of atorvastatin and delavirdine. Am J Med. 2002; 112: 505.
  90. Guder W.G., Hofmann W. Clinical role of urinary low molecular weight proteins: their diagnostic and prognostic implications. Scand J Clin Lab Invest Suppl. 2008; 241: 95-8.
  91. Gatanaga H., Tachikawa N., Kikuchi Y. et al. Urinary beta2-microglobulin as a possible sensitive marker for renal injury caused by tenofovir disoproxil fumarate. AIDS. Res Hum Retroviruses. 2006 Aug;22(8): 744-8.
  92. Woodward C.L., Hall A.M., Williams I.G. et al. Tenofovir-associated renal and bone toxicity. HIV Med. 2009; 10:482-487.
  93. Waheed S., Attia D., Estrella M.M. et al. Proximal tubular dysfunction and kidney injury associated with tenofovir in HIV patients: a case series. Clin Kidney J. 2015; 8: 420-425.
  94. Hamzah L., Booth J.W., Jose S. et al. Renal tubular disease in the era of combination antiretroviral therapy. AIDS. 2015; 29: 1831-1836.
  95. Gupta S. K. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDS. 2008; 22, 99-103.
  96. Izzedine H., Launay-Vacher V., Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005; 45: 804-817.
  97. Samuels R., Bayerri C.R., Sayer J.A. et al. Tenofovir disoproxil fumarate associated renal tubular dysfunction: noninvasive assessment of mitochondrial injury. AIDS. 2017; 31:1297-1301.
  98. Hamzah L., Jose S., Booth J.W. et al. Treatment-limiting renal tubulopathy in patients treated with tenofovir disoproxil fumarate. J Infect. 2017; 74: 492-500.
  99. Stray K.M., Bam R.A., Birkus G. et al. Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother. 2013; 58: 4982-4989.
  100. German P., Liu H.C., Szwarcberg J. et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. J Acquir Immune Defic Syndr. 2014; 61: 32-40.
  101. Buchacz K., Young B., Baker R.K. et al. Renal function in patients receiving tenofovir with ritonavir/lopinavir or ritonavir/atazanavir in the HIV Outpatient Study (HOPS) cohort. J Acquir Immune Defic Syndr. 2006; 43: 626-628.
  102. Calza L., Trapani F., Salvadori C. et al. Incidence of renal toxicity in HIV-infected, antiretroviral-naive patients starting tenofovir/emtricitabine associated with efavirenz, atazanavir/ritonavir, or lopinavir/ritonavir. Scand J Infect Dis. 2013; 45: 147-154.
  103. Selvaraj S., Ghebremichael M., Li M. et al. Antiretroviral therapy-induced mitochondrial toxicity: potential mechanisms beyond polymerase-g inhibition. Clin Pharmacol Ther. 2014; 96: 110-120.
  104. Woodward C.L., Hall A.M., Williams I.G. et al. Tenofovir-associated renal and bone toxicity. HIV Med. 2009; 10: 482-7.
  105. James C.W., Steinhaus M.C., Szabo S. et al. Tenofovir-related nephrotoxicity: Case report and review of the literature. Pharmacotherapy. 2004; 24: 415-418.
  106. Cattaneo D., Gervasoni C. Novel Antiretroviral Drugs in Patients with Renal Impairment: Clinical and Pharmacokinetic Considerations. Eur J Drug Metab Pharmacokinet. 2017; 42(4): 559-572. doi: 10.1007/s13318-016-0394-6.
  107. Yanagisawa K., Nagano D., Ogawa Y. еt al. Raltegravir is safely used with long-term viral suppression for HIVinfected patients on hemodialysis: a pharmacokinetic study. AIDS. 2016; 30: 970-972.
  108. Stray K.M., Bam R.A., Birkus G. et al. Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother. 2013; 57(10):4982. https://doi.org/10.1128/AAC.00712-13
  109. Milburn J., Rachael Jeremy J., Levy B. Renal effects of novel antiretroviral drugs. Nephrol Dial Transplant. 2016; 0: 1-6. doi: 10.1093/ndt/gfw064
  110. Gallant J.E., Daar E.S., Raffi F. et al. Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate given as fixed-dose combinations containing emtricitabine as backbones for treatment of HIV-1 infection in virologically suppressed adults: a randomised, doubleblind, active-controlled phase 3 trial. Lancet HIV. 2016; 3: e158-e165.
  111. Aloy B., Tazi I., Bagnis C. еt al. Is tenofovir alafenamide safer than tenofovir disoproxil fumarate for the kidneys? AIDS Rev. 2016; 18(4): 184-92.
  112. Wang H., Lu X., Yang X. еt al. The efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate in antiretroviral regimens for HIV-1 therapy: meta-analysis. Medicine (Baltimore). 2016; 95: e5146.
  113. Рost F.A., Tebas P., Clarke A. et al. Brief report: switching to tenofovir alafenamide, coformulated with elvitegravir, cobicistat, and emtricitabine, in HIV-Infected adults with renal impairment: 96-week results from a single-arm, multicenter, open-label phase 3 study. J Acquir Immune Defic Syndr. 2017; 74: 180-184.
  114. Sax P.E., Wohl D., Yin M.T. et al. Tenofovir alafenamide vs. tenofovir disoproxil fumarate coformulated with elvitegravir, cobicistat and emtricitabine for initial treatment of HIV-1 infection: two randomised double blind phase 3 non-inferiority trials. Lancet. 2015; 385: 2606-2615.
  115. Morris A.A., Baudouin S.V. Snow M.H. Renal tubular acidosis and hypophosphataemia after treatment with nucleoside reversetranscriptase inhibitors. AIDS. 2001; 15: 140-141.
  116. Ahmad M. Abacavir-induced reversible Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiencysyndrome. J. Postgrad. 2006; 52: 296-297.
  117. Seguro A. C. Effects of hypokalemia and hypomagnesemia on zidovudine (AZT) and didanosine (ddI) nephrotoxicity in rats. Clin.Nephrol. 2003; 59: 267-272.
  118. Izzedine H., Lescure F.X., Bonnet F. HIV medication-based urolithiasis. Clin Kidney J. 2014; 7: 121-6.
  119. Hortin G.L., King C., Miller K.D. et al. Detection of indinavir crystals in urine: dependence on method of analysis. Arch Pathol Lab Med. 2000; 124: 246-250.
  120. Gagnon R.F., Tecimer S.N., Watters A.K. et al. Prospective study of urinalysis abnormalities in HIV-positive individuals treated with indinavir. Am J Kidney Dis. 2000; 36: 507-515.
  121. Dieleman J.P., van Rossum A.M., Stricker B.C. et al. Persistent leukocyturia and loss of renal function in a prospectively monitored cohort of HIV-infected patients treated with indinavir. J Acquir Immune Defic Syndr. 2003; 32: 135-142.
  122. Hamm M., Wawroschek F., Rathert P. Urinary cytology changes in protease inhibitor induced urolithiasis. J Urol. 2000; 163: 1249-1250.
  123. Jaradat M., Phillips C., Yum M.N. et al. Acute tubulointerstitial nephritis attributable to indinavir therapy. Am J Kidney Dis. 2000; 35:16.
  124. Tseng A., Seet J., Phillips E.J. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br J Clin Pharmacol. 2015; 79: 182-94.
  125. Hamada Y., Nishijima T., Watanabe K. et al. High incidence of renal stones among HIV-infected patients on ritonavir-boosted atazanavir than in those receiving other protease inhibitor-containing antiretroviral therapy. Clin Infect Dis. 2012; 55: 1262-1269.
  126. Lafaurie M., De Sousa B., Ponscarme D.et al. Clinical features and risk factors for atazanavir (ATV)-associated urolithiasis: a case-control study. PLoS One. 2014; 9:e112836.
  127. Valencia M.E., Moreno V. Atazanavir-induced nephrolithiasis. Enferm Infecc Microbiol Clin. 2009; 27(2):134-135.
  128. Lastours V., De Silva E.F.R., Daudon M. et al. High levels of atazanavir and darunavir in urine and crystallyria in asymptomatic patients. J Antimicrob Chemother. 2013; 8: 1850-1856.
  129. Gervasoni C., Meraviglia P., Minisci D. et al. Metabolic and kidney disordes correlate with atazanavir concentrations in HIV-infected patients: is it time to revise atazanavir dosage? PloS One. 2015; 4: е0123670.
  130. Hou J., Nast C.C. Changing concepts of HIV infection and renal disease. Curr Opin Nephrol Hypertens. 2018; 27: 144-152.
  131. Kidney Disease Improving Global Outcomes (KDIGO) Chronic Kidney Disease Work Group. KDIGO. clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2012; 2013(3): 1-150.
  132. Kooij K.W., Vogt L., Wit F.W. et al. Higher prevalence and faster progression of chronic kidney disease in human immunodeficiency virus-infected middle-aged individuals compared with human immunodeficiency virus-uninfected controls. J Infect Dis. 2017; 216: 622-31.
  133. Mocroft A., Lundgren J.D., Ross M. еt al. Data Collection on Adverse events of Anti-HIV Drugs (D:A:D) Study. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international cohort study. Lancet HIV. 2016; 3: e23-32.
  134. Nakhoul G.N., Huang H., Arrigain S. et al. Serum potassium, end-stage renal disease and mortality in chronic kidney disease. Am J Nephrol. 2015; 41:456-463.
  135. Luo J., Brunelli S., Jensen D.E., Yang A. Association between serum potassium and outcomes in patients with reduced kidney function. Clin J Am Soc Nephrol. 2016; 11:90-100.
  136. Cirino C.M., Kan V.L. Hypokalemia in HIV patients on tenofovir. AIDS. 2006; 20 (12): 1671-1673.
  137. Grant P.M., Kitch D., McComsey G.A. et al. Long-term Bone Mineral Density Changes in Antiretroviral-Treated HIV-Infected Individuals. J Infect Dis. 2016; 214:607-11. https://doi.org/10.1093/ infdis/jiw204.
  138. Abd-Elmoniem K.Z., Unsal A.B., Eshera S. et al. Increased coronary vessel wall thickness in HIV-infected young adults. Clin Infect Dis. 2014; 59:1779-86. https://doi.org/10.1093/cid/ciu672.
  139. Troll J.G. Approach to dyslipidemia, lipodystrophy, and cardiovascular risk in patients with HIV infection. Curr Atheroscler Rep. 2011; 13:51-6. https://doi.org/10.1007/ s11883-010-0152-1.
  140. Achhra A.C., Nugent M., Mocroft A. et al. Chronic Kidney Disease and Antiretroviral Therapy in HIV-Positive Individuals: Recent Developments. Curr HIV/AIDS Rep. 2016; 13(3): 149-57. doi: 10.1007/s11904-016-0315-y
  141. Ryom L., Mocroft A., Kirk O. et al. Predictors of estimated glomerular filtration rate progression, stabilization or improvement after chronic renal impairment in HIV-positive individuals. AIDS. 2017; 31:1261-1270.
  142. Estrada V., Portilla J. Dyslipidemia related to anti-retroviral therapy. AIDS Rev. 2011; 13(1):49-56.
  143. Scherzer R., Gandhi M., Estrella M.M. et al. A chronic kidney disease risk score to determine tenofovir safety in a prospective cohort of HIV-positive male veterans. AIDS. 2014; 28: 1289-1295.
  144. Gillard B.K., Raya J.L., Ruiz-Esponda R. et al. Impaired lipoprotein processing in HIV patients on antiretroviral therapy: aberrant high-density lipoprotein lipids, stability, and function. Arterioscler Thromb Vasc Biol. 2013; 33:1714-21. https://doi.org/10.1161/ATVBAHA.113.301538.
  145. Cheng SH, Cheng CY, Sun NL. Lipid-lowering agents for dyslipidemia in patients who were infected with HIV in Taoyuan, Taiwan. J Int AIDS Soc. 2014; 17:19556. https:// doi.org/10.7448/IAS.17.4.19556.
  146. Jevtovic D.J., Dragovic G., Salemovic D. et al. The metabolic syndrome, an epidemic among HIV-infected patients on HAART. Biomed Pharmacother. 2009; 63:337-42. https://doi.org/10.1016/j. biopha.2008.09.011.
  147. Matoga M.M., Hosseinipour M.C., Aga E. et al. Hyperlipidaemia in HIV-infected patients on lopinavir/ritonavir monotherapy in resource-limited settings. Antivir Ther. 2017;22(3):205-213.
  148. Chow D.C., Souza S.A., Chen R. et al. Elevated blood pressure in HIV-infected individuals receiving highly active antiretroviral therapy. HIV Clin Trials 2003; 4: 411-416.
  149. Seaberg E.C., Munoz A., Lu M. et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS 2005; 19: 953-960.
  150. Friis-Moller N., Weber R., Reiss P. et al. Cardiovascular disease risk factors in HIV patients-Association with antiretroviral therapy. Results from the DAD study. AIDS. 2003; 17: 1179-1193.
  151. Crane H. M., Van Rompaey S. E., Kitahata M. M. Antiretroviral medications associated with elevated blood pressure among patients receiving highly active antiretroviral therapy. AIDS. 2006; 20: 1019-1026.
  152. Ekrikpo U., Kengne A., Bello A. et al. Chronic kidney disease in the global adult HIV-infected population: a systematic review and meta-analysis. PLoS One. 2018; 13: e0195443.
  153. Dieleman J.P., van Rossum A.M., Stricker B.C. et al. Persistent leukocyturia and loss of renal function in a prospectively monitored cohort of HIV-infected patients treated with indinavir. J Acquir Immune Defic Syndr. 2003; 32: 135-142.
  154. Rodriguez-Nóvoa S. Alvarez E., Labarga P. et al. Renal toxicity associated with tenofovir use. Expert Opin Drug Saf. 2010; 9(4): 545-59.
  155. Hara M., Suganuma A., Yanagisawa N. et al. Atazanavir nephrotoxicity. Clin Kidney J. 2015; 8: 137-142.
  156. Schetz M., Dasta J., Goldstein S., Golper T. Drug-induced acute renal failure. Curr Opin Crit Care 2005; 11(6): 555-565.
  157. Dube M., Fenton M. Lipid abnormalities. Clin Infect Dis. 2003; 36 (Suppl.2.), 79-83.
  158. Rehman H., Kamal A.K., Morris P.B. et al. Mobile Health (mHealth) Technology for the Management of Hypertension and Hyperlipidemia: Slow Start but Loads of Potential. Curr Atheroscler Rep. 2017; 19:12. https://doi.org/10.1007/s11883-017-0649-y.
  159. Husain N.E.O., Ahmed M.H. Managing dyslipidemia in HIV/AIDS patients: challenges and solutions. HIV/AIDS (Auckland, NZ). 2015;7:1-10.
  160. Estrella M.M., Parekh R.S., Abraham A.J. et al. The impact of kidney function at highly active antiretroviral therapy initiation on mortality in HIV-infected women. Acquir Immune Defic Syndr. 2010; 55(2): 217-20.
  161. Inker L.A., Wyatt C., Creamer R. et al. Performance of creatinine and cystatin C GFR estimating equations in an HIV-positive population on antiretrovirals. J Acquir Immune Defic Syndr. 2012; 61: 302-309.
  162. Yombi J.C., Jones R., Poznia A. et al. Monitoring of kidney function in HIV-positive patients. HIV Med. 2015; 16: 457-467.
  163. Lucas G.M., Cozzi-Lepri A., Wyatt C.M. et al. Glomerular filtration rate estimated using creatinine, cystatin C or both markers and the risk of clinical events in HIV-infected individuals. HIV Med. 2014; 15:116-123.
  164. Mocroft A., Ryom L., Reiss P. et al. A comparision of estimated glomerular filtration rates using Cockcroft-Gaault and the Chronic Kidney Disease Epidemiology Collaboration estimating eguations in HIV infection. HIV Med. 2014; 144-152.
  165. Hamzah L., Jones R., Post F.A. Optimizing antiretroviral regimens in chronic kidney disease. Curr Opin Infect Dis. 2019; 32: 1-7.
  166. Matzke G.R., Aronoff G.R., Atkinson Jr. A.J. et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011; 80(11):1122-37.
  167. Barre.-Sinoussi F., Ross A.L, Delfraissy J.F. Past, present and future: 30 years of HIV research. Nat Rev Microbiol. 2013; 11: 8.77-83.
  168. Personett H.A., Kayhart B.M., Barreto E.F. et al. Renal Recovery following Liposomal Amphotericin B-Induced Nephrotoxicity. Int J Nephrol. 2019, Article ID 8629891, 8 pages. https://doi.org/10.1155/2019/8629891
  169. Roberts D.M., Smith M.W.H., McMullan B.J. et al. Acute kidney injury due to crystalluria following acute valacyclovir overdose. Kidney Intern. 2011; 79, 574; doi:10.1038/ki.2010.496
  170. Fleischer R., Johnson M. Acyclovir nephrotoxicity: a case report highlighting the importance of prevention, detection, and treatment of acyclovir-induced nephropathy. Case Rep Med 2010; 2010. pii: 602783. doi:https://doi.org/10. 1155/2010/602783
  171. Smith D.E., Hills D.A., Harman C. et al. Nebulized pentamidine for the prevention of Pneumocystis carinii pneumonia in AIDS patients: experience of 173 patients and a review of the literature. Q J Med. 1991; 80(291): 619-29.
  172. Perazella M. Trimethoprim-induced hyperkalaemia: clinical data, mechanism, prevention and management. Drug Saf. 2000; 22 (3): 227-36.
  173. Nickels L. C., Jones C., Stead L.G. Trimethoprim-Sulfamethoxazole-Induced Hyperkalemia in a Patient with Normal Renal Function. Case Reports in Emergency Medicine Volume 2012, Article ID 815907, 3 pages doi:10.1155/2012/815907
  174. Fine D., Perazella M., Lucas G. et al. Renal disease in patients with HIV infection: epidemiology, рathogenesis and management. Drugs. 2008; 68 (7): 963-980.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"