<< Вернуться к списку статей журнала
Том 26 №2 2024 год - Нефрология и диализ
Определение скорости клубочковой фильтрации у детей и подростков: теоретические и практические аспекты
Байко С.В.
Кулакова Е.Н.
Аксёнова М.Е.
Шумихина М.В.
Настаушева Т.Л.
DOI: 10.28996/2618-9801-2024-2-186-203
Аннотация: Скорость клубочковой фильтрации (СКФ) является основным показателем, характеризующим функцию почек. Целью работы явилась систематизация данных по методам измерения и расчета СКФ в детской популяции с разработкой алгоритма действий для единого подхода и более точного определения СКФ. В статье обсуждаются методы измерения с помощью экзогенных и эндогенных маркеров клубочковой фильтрации и уравнения расчета СКФ (рСКФ), преимущества и ограничения их использования. Подробно описываются эндогенные маркеры СКФ - сывороточный креатинин и цистатин С. Подчеркивается, что в современных формулах рСКФ используются значения этих маркеров, полученные только стандартизованными методами. Для стандартизации измерения концентрации креатинина применяется эталонный метод - тандемная масс-спектрометрия с изотопным разбавлением (isotope dilution mass spectrometry, IDMS) и калибраторы со стандартным эталонным материалом (SRM) креатинина с присвоением сертификационного кода NIST (для креатинина NIST SRM 967). Переход лабораторий на измерение концентрации креатинина со стандартизацией по IDMS послужил толчком к модернизации уже имевшихся формул и появлению новых уравнений для расчета СКФ. Подробно описываются международные рекомендации для первичной оценки почечной функции с использованием креатинина крови и рСКФ, а при определенных обстоятельствах, когда рСКФ по креатинину дает менее точный результат, предлагается включать дополнительные уточняющие тесты. Важной составляющей статьи является подробное описание расчетных формул СКФ в историческом аспекте и обоснование преимущественного использования в настоящее время уравнений CKiD U25 и EKFC. Отдельные разделы работы посвящены особенностям оценки СКФ у детей раннего возраста, подростков и молодых взрослых. Выделены частные вопросы определения СКФ, а именно: у детей с тяжелыми соматическими, онкогематологическими заболеваниями, хроническими инфекциями, а также у пациентов, находящихся в критическом состоянии. В заключении приводится четкий алгоритм выбора формулы для расчета СКФ и последовательность проведения уточняющих тестов в случае необходимости.
Для цитирования: Байко С.В., Кулакова Е.Н., Аксёнова М.Е., Шумихина М.В., Настаушева Т.Л. Определение скорости клубочковой фильтрации у детей и подростков: теоретические и практические аспекты. Нефрология и диализ. 2024. 26(2):186-203. doi: 10.28996/2618-9801-2024-2-186-203
Весь текст
Ключевые слова: скорость клубочковой фильтрации (СКФ),
дети и подростки,
маркеры СКФ,
уравнения расчета СКФ,
креатинин,
цистатин С,
CKiD U25,
glomerular filtration rate (GFR),
children and adolescents,
GFR markers,
GFR calculation equations,
creatinine,
cystatin C,
CKiD U25Список литературы:- Inker L.A., Titan S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am J Kidney Dis. 2021. 78(5):736-749. doi: 10.1053/j.ajkd.2021.04.016
- Байко С.В. Хроническая болезнь почек у детей: определение, классификация и диагностика. Нефрология и диализ. 2020. 22(1):53-70. doi: 10.28996/2618-9801-2020-1-53-70
- Кулакова Е.Н., Настаушева Т.Л., Звягина Т.Г. и соавт. Проблемы оценки скорости клубочковой фильтрации у подростков и молодых взрослых: описательный обзор литературы и примеры из практики. Нефрология и диализ. 2021. 23(4):472-488. doi: 10.28996/2618-9801-2021-4-472-488
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. Am J Kidney Dis. 2002. 39 (suppl 1):S1-S266. doi: 10.7326/0003-4819-139-2-200307150-00013
- Miller W.G. Perspective on new equations for estimating glomerular filtration rate. Clin Chem. 2021. 67(6):820-822. doi: 10.1093/clinchem/hvab029
- Inker L.A., Levey A.S. New GFR-estimating equations for children and young adults in North America and Europe. Kidney Int. 2021. 99(4):808-811. doi: 10.1016/j.kint.2020.12.032
- Pottel H. Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol. 2017. 32(2):249-263. doi: 10.1007/s00467-016-3373-x
- Soveri I., Berg U.B., Björk J. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 2014. 64(3):411-424. doi: 10.1053/j.ajkd.2014.04.010
- KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013. 3(1):S 1-150
- Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек: пер. с англ. Е. В. Захаровой. Нефрология и диализ. 2017. 19(1):22-206. doi: 10.28996/1680-4422-2017-1-22-206
- Аверьянов С.Н., Амчеславский В.Г., Багаев В.Г. и др. Определение скорости клубочковой фильтрации у детей: история и современные подходы. Педиатрическая фармакология. 2018. 15(3):218-223. doi: 10.15690/pf.v15i3.1901
- Delanaye P., Cavalier E., Pottel H. Serum Creatinine: Not So Simple! Nephron. 2017. 136(4):302-308. doi:10.1159/000469669
- den Bakker E., Gemke R.J.B.J., Bökenkamp A. Endogenous markers for kidney function in children: a review. Crit. Rev. Clin. Lab. Sci. 2018. 55(3):163-183. doi: 10.1080/10408363.2018.1427041
- Ostermann M., Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit. Care. 2016. 20(1):299. doi: 10.1186/s13054-016-1478-z
- Lempert K.D. Probiotics and CKD Progression: Are Creatinine-Based Estimates of GFR Applicable? AJKD. 2019. 74(4):429-431. doi: 10.1053/j.ajkd.2019.02.003
- Dunn S.R., Gabuzda G.M., Superdock K.R. et al. Induction of creatininase activity in chronic renal failure: timing of creatinine degradation and effect of antibiotics. Am. J. Kidney Dis. 1997. 29(1):72-77. doi: 10.1016/s0272-6386(97)90010-x
- Papadakis M.A., Arieff A.I. Unpredictability of clinical evaluation of renal function in cirrhosis. Prospective study. Am. J. Med. 1987. 82(5): 945-952. doi: 10.1016/0002-9343(87)90156-2
- Doi K., Yuen P.S., Eisner C. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 2009. 20(6):1217-1221. doi: 10.1681/ASN.2008060617
- Mian AN, Schwartz GJ. Measurement and Estimation of Glomerular Filtration Rate in Children. Adv Chronic Kidney Dis. 2017. 24(6):348-356. doi: 10.1053/j.ackd.2017.09.011
- Rodieux F., Wilbaux M., van den Anker J.N. et al. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin. Pharmacokinet. 2015. 54(12):1183-204. doi: 10.1007/s40262-015-0298-7
- Feldman H., Guignard J.P. Plasma creatinine in the first month of life. Arch. Dis. Child. 1982. 57(2):123-126. doi: 10.1136/adc.57.2.123
- Mosteller R. Simplified calculation of body surface area. New Engl. J. Med. 1987. 317(17):1098. doi: 10.1056/NEJM198710223171717
- Интернет-калькулятор расчета площади поверхности тела у детей по формуле Дюбуа, Мостеллера, Хэйкока и др. [Электронный ресурс]. URL: https://juxtra.info/diagnostics/body_surface_area.php (дата обращения: 16.12.2023)
- Filler G., Bökenkamp A., HofmannW. et al. Cystatin C as a marker of GFR - history, indications, and future research. Clin. Biochem. 2005. 38(1):1-8. doi: 10.1016/j.clinbiochem.2004.09.025
- Andersen T.B., Eskild-Jensen A., Frøkiaer J. et al. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr. Nephrol. 2009. 24(5): 929-941. doi: 10.1007/s00467-008-0991-y
- Slort P.R., Ozden N., Pape L. et al. Comparing cystatin C and creatinine in the diagnosis of pediatric acute renal allograft dysfunction. Pediatr. Nephrol. 2012. 27(5):843-849. doi: 10.1007/s00467-011-2073-9
- Bökenkamp A., Laarman C.A., Braam K.I. et al. Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin. Chem. 2007. 53(12):2219-2221. doi: 10.1373/clinchem.2007.094946
- Zhai J.L., Ge N., Zhen Y. et al. Corticosteroids Significantly Increase Serum Cystatin C Concentration without Affecting Renal Function in Symptomatic Heart Failure. Clin Lab. 2016. 62(1-2):203-207. doi: 10.7754/clin.lab.2015.150701
- Ye Y., Gai X., Xie H., et al. Impact of thyroid function on serum cystatin C and estimated glomerular filtration rate: a cross-sectional study. Endocr Pract. 2013. 19(3):397-403. doi: 10.4158/EP12282.OR
- Knight E.L., Verhave J.C., Spiegelman D. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004. 65(4):1416-1421. doi: 10.1111/j.1523-1755.2004.00517.x
- Adingwupu O.M., Barbosa E.R., Palevsky P.M. et al. Cystatin C as a GFR Estimation Marker in Acute and Chronic Illness: A Systematic Review. Kidney Med. 2023. 5(12):100727. doi: 10.1016/j.xkme.2023.100727
- Bökenkamp A., Domanetzki M., Zinck R. et al. Reference values for cystatin C serum concentrations in children. Pediatr. Nephrol. 1998. 12(2):125-129. doi: 10.1007/s004670050419
- Delanghe J.R., Speeckaert M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus. 2011. 4(2): 83-86. doi: 10.1093/ndtplus/sfq211
- Cobbaert C.M., Baadenhuijsen H., Weykamp C.W. Prime time for enzymatic creatinine methods in pediatrics. Clin. Chem. 2009. 55 (3):549-558. doi: 10.1373/clinchem.2008.116863
- Peake M, Whiting M. Measurement of serum creatinine - current status and future goals. Clin Biochem Rev. 2006. 27(4):173-184
- Myers G.L., Miller W.G., Coresh J. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 2006. 52(1):5-18. doi: 10.1373/clinchem.2005.0525144
- Greenberg N., Roberts W.L., Bachmann L.M. et al. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles. Clinical chemistry. 2012. 58(2):391-401. doi: 10.1373/clinchem.2011.172288
- Ou M., Song Y., Li S. et al. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One. 2015. 10(7):e0133912. doi: 10.1371/journal.pone.0133912
- Nah H., Lee S.G., Lee K.S. et al. Evaluation of bilirubin interference and accuracy of six creatinine assays compared with isotope dilution-liquid chromatography mass spectrometry. Clin. Biochem. 2016. 49(3):274-281. doi: 10.1016/j.clinbiochem.2015.10.015
- Delanghe J.R. How to estimate GFR in children. Nephrol. Dial. Transplant. 2009. 24(3):714-716. doi: 10.1093/ndt/gfn306
- Dodder N.G., Tai S.S., Sniegoski L.T. et al. Certification of creatinine in a human serum reference material by GC-MS and LC-MS. Clin Chem. 2007. 53(9):1694-1699. doi: 10.1373/clinchem.2007.090027
- Adeli K., Higgins V., Trajcevski K. et al. The Canadian laboratory initiative on pediatric ref- erence intervals: a CALIPER white paper. Crit. Rev. Cl. Lab. Sci. 2017. 54(6):358-413. doi: 10.1080/10408363.2017.1379945
- Pediatric Nephrology, 8th Ed. Eds. F. Emma, S.L. Goldstein, A. Bagga, C.M. Bates, R. Shroff. Springer Nature Switzerland AG. 2022. P. 2057.
- Ristiniemi N., Savage C., Bruun L. et al. Evaluation of a new immunoassay for cystatin C, based on a double monoclonal principle, in men with normal and impaired renal function. Nephrol. Dial. Transplant. 2012. 27(2):682-687. doi: 10.1093/ndt/gfr350
- Yang S.K., Liu J., Zhang X.M. et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: a meta-analysis. Ther. Apher. Dial. 2016. 20(6):579-587. doi: 10.1111/1744-9987.12462
- Schwartz G.J., Schneider M.F., Maier P.S. et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012. 82(4):445-453. doi: 10.1038/ki.2012.169
- Grubb A., Blirup-Jensen S., Lindström V. et al. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin. Chem. Lab. Med. 2010. 48(11):1619-1621. doi: 10.1515/CCLM.2010.318
- Delanaye P., Pieroni L., Abshoff C. et al. Analytical study of three cystatin C assays and their impact on cystatin C-based GFR-prediction equations. Clin. Chim. Acta. 2008. 398(1-2):118-124. doi: 10.1016/j.cca.2008.09.001
- Abitbol C.L., DeFreitas M.J., Strauss J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol. 2016. 31(12):2213-2222. doi: 10.1007/s00467-016-3320-x
- Ziegelasch N., Vogel M., Müller E. et al. Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr Nephrol. 2019. 34(3):449-457. doi: 10.1007/s00467-018-4087-z
- Schwartz G.J., Haycock G.B., Edelmann C.M., Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976. 58(2):259-263. doi: 10.1055/s-2004-830943
- Schwartz G.J., Feld L.G., Langford D.J. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984. 104(6):849-54. doi: 10.1016/s0022-3476(84)80479-5
- Schwartz G.J., Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985. 106(3):522-526. doi: 10.1016/S0022-3476(85)80697-1
- Brion L.P., Fleischman A.R., McCarton C., Schwartz G.J. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986. 109(4):698-707. doi: 10.1016/s0022-3476(86)80245-1
- Schwartz G.J., Brion L.P., Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987. 34(3):571-90. doi: 10.1016/s0031-3955(16)36251-4
- Schwartz G.J., Furth S., Cole S.R. et al. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006. 69(11):2070-2077. doi: 10.1038/sj.ki.5000385
- Schwartz G.J., Muñoz A., Schneider M.F., et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009. 20(3):629-637. doi: 10.1681/ASN.2008030287
- Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents. Clin. J. of the Am. Soc. of Nephrol. 2009. 4(11):1832-1843. doi:10.2215/CJN.01640309
- De Souza V.C., Rabilloud M., Cochat P. et al. Schwartz formula: is one k-coefficient adequate for all children? PLoS One. 2012. 7(12):e53439. doi: 10.1371/journal.pone.0053439
- Selistre L., De Souza V., Cochat P. et al. GFR estimation in adolescents and young adults. J. Am. Soc. Nephrol. 2012. 23(6):989-996. doi: 10.1681/ASN.2011070705
- Pierce C.B., Muñoz A., Ng D.K. et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021. 99(4):948-956. doi: 10.1016/j.kint.2020.10.047
- Inker L.A., Tighiouart H., Adingwupu O.M. et al. Performance of GFR Estimating Equations in Young Adults. American Journal of Kidney Diseases. Published online September 2023. doi: 10.1053/j.ajkd.2023.06.008
- Pottel H., Björk J., Courbebaisse M., et al. Development and validation of a modified Full Age Spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med. 2021. 174(2):183-191. doi: 10.7326/M20-4366
- Levey A.S., Stevens L.A., Schmid C.H. et al. A new equation to estimate glomerular filtration rate [published correction appears in Ann Intern Med. 2011 Sep 20;155(6):408]. Ann Intern Med. 2009. 150(9):604-612. doi: 10.7326/0003-4819-150-9-200905050-00006
- Pottel H., Hoste L., Dubourg L. et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016. 31(5):798-806. doi: 10.1093/ndt/gfv454
- Pottel H., Nyman U., Björk J. et al. Extending the cystatin C based EKFC-equation to children - validation results from Europe. Pediatr Nephrol. Published online October 24, 2023. doi: 10.1007/s00467-023-06192-6
- Wang Y., Adingwupu O.M., Shlipak M.G. et al. Discordance Between Creatinine-Based and Cystatin C-Based Estimated GFR: Interpretation According to Performance Compared to Measured GFR. Kidney Med. 2023. 5(10):100710. doi: 10.1016/j.xkme.2023.100710
- Fu E.L., Levey A.S., Coresh J. et al. Accuracy of GFR Estimating Equations in Patients with Discordances between Creatinine and Cystatin C-Based Estimations. J Am Soc Nephrol 2023. 34(7):1241-1251. doi: 10.1681/ASN.0000000000000128
- Seiberth S., Terstegen T., Strobach D., Czock D. Accuracy of freely available online GFR calculators using the CKD-EPI equation. Eur J Clin Pharmacol. 2020. 76(10):1465-1470. doi: 10.1007/s00228-020-02932-x
- Selewski D.T., Charlton J.R., Jetton J.G. et al. Neonatal Acute Kidney Injury. Pediatrics. 2015. 136(2):e463-e473. doi: 10.1542/peds.2014-3819
- Stritzke A., Thomas S., Amin H. et al. Renal consequences of preterm birth. Mol Cell Pediatr. 2017. 4(1):2. doi: 10.1186/s40348-016-0068-0
- Muhari-Stark E., Burckart G.J. Glomerular Filtration Rate Estimation Formulas for Pediatric and Neonatal Use. J Pediatr Pharmacol Ther. 2018. 23(6):424-431. doi: 10.5863/1551-6776-23.6.424
- Pottel H., Mottaghy F.M., Zaman Z., Martens F. On the relationship between glomerular filtration rate and serum creatinine in children. Pediatr Nephrol. 2010. 25(5):927-934. doi: 10.1007/s00467-009-1389-1
- Smeets N.J.L., IntHout J., van der Burgh M.J.P. et al. Maturation of GFR in Term-Born Neonates: An Individual Participant Data Meta-Analysis. J Am Soc Nephrol. 2022. 33(7):1277-1292. doi: 10.1681/ASN.2021101326
- Smeets N.J.L., Teunissen E.M.M., van der Velden K. et al. Glomerular filtration rate in critically ill neonates and children: creatinine-based estimations versus iohexol-based measurements. Pediatr Nephrol. 2023. 38(4):1087-1097. doi: 10.1007/s00467-022-05651-w
- Pottel H., Björk J., Bökenkamp A., et al. Estimating glomerular filtration rate at the transition from pediatric to adult care. Kidney Int. 2019. 95(5):1234-1243. doi: 10.1016/j.kint.2018.12.020
- Schwaderer A.L., Maier P., Greenbaum L.A., et al. Application of GFR estimating equations to children with normal, near-normal, or discordant GFR. Pediatric Nephrology. Published online 2023. doi: 10.1007/s00467-023-06045-2
- Pottel H., Björk J., Delanaye P., Nyman U. Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol. 2022. 37(9):2213-2216. doi: 10.1007/s00467-022-05429-0
- Nyman U., Björk J., Berg U. et al. The Modified CKiD Study Estimated GFR Equations for Children and Young Adults Under 25 Years of Age: Performance in a European Multicenter Cohort. Am J Kidney Dis. 2022. 80(6):807-810. doi: 10.1053/j.ajkd.2022.02.018
- Delanaye P., Rule A.D., Schaeffner E, et al. Performance of the European Kidney Function Consortium (EKFC) creatinine-based equation in United States cohorts. Kidney Int. Published online December 13, 2023. doi: 10.1016/j.kint.2023.11.024
- Filler G., Ahmad F., Bhayana V., et al. Limitations of U25 CKiD and CKD-EPI eGFR formulae in patients 2-20 years of age with measured GFR >60 mL/min/1.73 m2-a cross-sectional study. Pediatric Nephrology. Published online October 16, 2023. doi: 10.1007/s00467-023-06185-5
- Jeong T.D., Cho E.J., Lee W. et al. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med. 2017. 55(12):1891-1897. doi: 10.1515/cclm-2016-1151
- Lambert M., White-Koning M., Alonso M. et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide. Pediatr Blood Cancer. 2021. 68(1):e28747. doi: 10.1002/pbc.28747
- Hingorani S., Pao E., Schoch G. et al. Estimating GFR in adult patients with hematopoietic cell transplant: comparison of estimating equations with an iohexol reference standard. Clin J Am Soc Nephrol. 2015. 10(4):601-610. doi: 10.2215/CJN.06470614
- Costa E.S.V.T., Gil L.A. Jr, Inker L.A. et al. A prospective crosssectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors. Kidney Int. 2022. S0085-2538(21):01209-01206. doi: 10.1016/j.kint.2021.12.010.
- Bhasin B., Lau B., Atta M.G. et al. HIV viremia and T-cell activation differentially affect the performance of glomerular filtration rate equations based on creatinine and cystatin C. PloS One. 2013. 8(12):e82028. doi: 10.1371/journal.pone.0082028
- Lucas G.M., Atta M.G., Zook K. et al. Cross-sectional and longitudinal performance of creatinine- and cystatin C-based estimating equations relative to exogenously measured glomerular filtration rate in HIV-positive and HIV-negative persons. J Acquir Immune Defic Syndr. 2020. 85(4):e58-e66. doi: 10.1097/QAI.0000000000002471
- De Souza V., Hadj-Aissa A., Dolomanova O. et al. Creatinine versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology. 2014. 59(4):1522-1531. doi: 10.1002/hep.26886
- Torre A., Aguirre-Valadez J.M., Arreola-Guerra J.M. et al. Creatinine versus cystatin C for estimating GFR in patients with liver cirrhosis. Am J Kidney Dis. 2016. 67(2):342-344. doi: 10.1053/j.ajkd.2015.09.022
- Wagner D., Kniepeiss D., Stiegler P. et al. The assessment of GFR after orthotopic liver transplantation using cystatin C and creatinine-based equations. Transpl Int. 2012. 25(5):527-536. doi: 10.1111/j.1432-2277.2012.01449.x
- Allen A.M., Kim W.R., Larson J.J. et al. Serum cystatin C as an indicator of renal function and mortality in liver transplant recipients. Transplantation. 2015. 99(7):1431-1435. doi: 10.1097/TP.0000000000000552
- Kervella D., Lemoine S., Sens F. et al. Cystatin C versus creatinine for GFR estimation in CKD due to heart failure. Am J Kidney Dis. 2017. 69(2):321-323. doi: 10.1053/j.ajkd.2016.09.016
- Swolinsky J.S., Nerger N.P., Leistner D.M. et al. Serum creatinine and cystatin C-based estimates of glomerular filtration rate are misleading in acute heart failure. ESC Heart Fail. 2021. 8(4):3070-3081. doi: 10.1002/ehf2.13404
- Aldenbratt A., Lindberg C., Johannesson E. et al. Estimation of kidney function in patients with primary neuromuscular diseases: is serum cystatin C a better marker of kidney function than creatinine? J Nephrol. 2022. 35(2):493-503. doi: 10.1007/s40620-021-01122-x
- Delanaye P., Cavalier E., Morel J. et al. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol. 2014. 15:9. doi: 10.1186/1471-2369-15-9
- Carlier M., Dumoulin A., Janssen A. et al. Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med. 2015. 41(3):427-435. doi: 10.1007/s00134-014-3641-9
- Haines R.W., Fowler A.J., Liang K. et al. Comparison of cystatin C and creatinine in the assessment of measured kidney function during critical illness. Clin J Am Soc Nephrol. 2023. 18(8):997-1005. doi: 10.2215/CJN.0000000000000203
- Chang A.R., George J., Levey A.S. et al. Performance of glomerular filtration rate estimating equations before and after bariatric surgery. Kidney Med. 2020. 2(6):699-706.e1. doi: 10.1016/j.xkme.2020.08.008
- Hanna P.E., Wang Q., Strohbehn I.A. et al. Medication-Related Adverse Events and Discordancies in Cystatin C-Based vs Serum Creatinine-Based Estimated Glomerular Filtration Rate in Patients With Cancer. JAMA Netw Open. 2023. 6(7):e2321715. doi: 10.1001/jamanetworkopen.2023.21715
- Morgan C., Senthilselvan A., Bamforth F. et al. Correlation between cystatin C- and renal scan-determined glomerular filtration rate in children with spina bifida. Pediatr. Nephrol. 2008. 23(2): 329-332. doi: 10.1007/s00467-007-0613-0
- Erlandsen E.J., Hansen R.M., Randers E. et al. Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries. Spinal Cord. 2012. 50(10):778-783. doi: 10.1038/sc.2012.52.
- Braat E., Hoste L., De Waele L. et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015. 25(5):381-387. doi: 10.1016/j.nmd.2015.01.005.
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024. 105(4S):S117-S314. doi: 10.1016/j.kint.2023.10.018
Другие статьи по теме