<< Вернуться к списку статей журнала
Том 25 №2 2023 год - Нефрология и диализ
Клинические Практические Рекомендации KDIGO 2022 по тактике ведения диабета при хронической болезни почек
DOI: 10.28996/2618-9801-2023-2-141-221
Аннотация: Клинические Практические Рекомендации KDIGO 2022 по тактике ведения диабета при хронической болезни почек представляет собой сфокусированное на ключевых изменениях обновление Рекомендаций KDIGO 2020 по этой теме. Рекомендации ориентированы на широкую аудиторию врачей, ведущих пациентов с диабетом и ХБП. Тематические области, по которым рекомендации обновлены, включают Главу 1: Комплексная помощь пациентам с сахарным диабетом и ХБП и Главу 4: Сахароснижающая терапия у пациентов с сахарным диабетом 2 типа (СД2) и ХБП. Главы Рекомендаций 2020 года о Мониторинге гликемии и целевых показателях у пациентов с диабетом и ХБП (Глава 2), Модификации образа жизни у пациентов с диабетом и ХБП (Глава 3), и Подходах к ведению пациентов с диабетом и ХБП (Глава 5) были признаны актуальными, и их содержание осталось неизменным. Разработке этого обновления Рекомендаций предшествовал четко структурированный процесс рассмотрения и оценки доказательств. Подходы к лечению и клинические рекомендации основаны на систематических обзорах соответствующих исследований и оценке качества доказательств и силы рекомендации в соответствии с «Системой классификации, оценки, разработки и экспертизы рекомендаций» (GRADE). Обсуждаются ограничения доказательств, а также представлены области будущих исследований.
Для цитирования: Клинические Практические Рекомендации KDIGO 2022 по тактике ведения диабета при хронической болезни почек. Перевод на русский язык: А.Ю. Земченков, К.А. Вишневский, А.Ш. Румянцев под редакцией Е.В. Захаровой. Нефрология и диализ. 2023. 25(2):141-221. doi: 10.28996/2618-9801-2023-2-141-221
Весь текст
Ключевые слова: ингибитор ангиотензин-превращающего фермента,
блокатор рецепторов ангиотензина II,
хроническая болезнь почек,
диализ,
основанный на доказательствах,
агонист рецептора ГПП-1,
гликемия,
мониторинг гликемии,
целевые показатели гликемии,
рекомендации,
HbA1c,
гемодиализ,
KDIGO,
образ жизни,
метформин,
модели оказания помощи,
питание,
ренин-ангиотензиновая система,
самоконтроль,
ингибитор НГЛТ2,
систематический обзор,
командная помощь,
angiotensin-converting enzyme inhibitor,
angiotensin II receptor blocker,
chronic kidney disease,
dialysis,
evidence-based,
GLP-1 receptor agonist,
glycemia,
glycemic monitoring,
glycemic targets,
guideline,
HbA1c,
hemodialysis,
KDIGO,
lifestyle,
metformin,
models of care,
nutrition,
renin-angiotensin system,
self-management,
SGLT2 inhibitor,
systematic review,
team-based careСписок литературы:- Arnett D.K., Khera A., Blumenthal R.S. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: part 1, lifestyle and behavioral factors. JAMA Cardiol. 2019; 4: 1043-1044
- Levine G.N., Bates E.R., Bittl J.A., et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2016; 68: 1082-1115
- Jardine M.J., Ninomiya T., Perkovic V., et al. Aspirin is beneficial in hypertensive patients with chronic kidney disease: a post-hoc subgroup analysis of a randomized controlled trial. J Am Coll Cardiol. 2010; 56: 956-965
- Perkovic V., Agarwal R., Fioretto P. et al. Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016; 90: 1175-1183
- Grundy S.M., Stone N.J., Bailey A.L., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019; 139: e1082-e1143
- Rawshani A., Rawshani A., Franzen S., et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018; 379: 633-644
- Ueki K., Sasako T., Okazaki Y., et al. Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes. Kidney Int. 2021; 99: 256-266
- Gaede P., Oellgaard J., Carstensen B., et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016; 59: 2298-2307
- Gaede P., Vedel P., Larsen N., et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003; 348: 383-393
- Breyer M.D., Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016; 15: 568-588
- Parving H.H., Lehnert H., Brochner-Mortensen J., et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001; 345: 870-878
- Makino H., Haneda M., Babazono T., et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007; 30: 1577-1578
- Brenner B.M., Cooper M.E., de Zeeuw D., et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345: 861-869
- Keane W.F., Brenner B.M., de Zeeuw D., et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 2003; 63: 1499-1507
- Strippoli G.F., Bonifati C., Craig M., et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006; 6: CD006257
- Ahmad J., Shafique S., Abidi S.M., et al. Effect of 5-year enalapril therapy on progression of microalbuminuria and glomerular structural changes in type 2 diabetic subjects. Diabetes Res Clin Pract. 2003; 60: 131-138
- Ahmad J., Siddiqui M.A., Ahmad H. Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care. 1997; 20: 1576-1581
- Bakris G.L., Barnhill B.W., Sadler R. Treatment of arterial hypertension in diabetic humans: importance of therapeutic selection. Kidney Int. 1992; 41: 912-919
- Bakris G.L., Slataper R., Vicknair N., et al. ACE inhibitor mediated reductions in renal size and microalbuminuria in normotensive, diabetic subjects. J Diabetes Complications. 1994; 8: 2-6
- Bojestig M., Karlberg B.E., Lindstrom T., et al. Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 2 diabetes. Diabetes Care. 2001; 24: 919-924
- Capek M., Schnack C., Ludvik B., et al. Effects of captopril treatment versus placebo on renal function in type 2 diabetic patients with microalbuminuria: a long-term study. Clin Investig. 1994; 72: 961-966
- Chase H.P., Garg S.K., Harris S., et al. Angiotensin-converting enzyme inhibitor treatment for young normotensive diabetic subjects: a two-year trial. Ann Ophthalmol. 1993; 25: 284-289
- Cordonnier D.J., Pinel N., Barro C., et al. Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. The Diabiopsies Group. J Am Soc Nephrol. 1999; 10: 1253-1263
- Crepaldi G., Carta Q., Deferrari G., et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998; 21: 104-110
- Garg S., Chase H.P., Jackson W.E., et al. Renal and retinal changes after treatment with ramipril and pentoxifylline in subjects with IDDM. Ann Ophthalmol-Glaucoma. 1998; 30: 33-37
- The EUCLID Study Group Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet. 1997; 349: 1787-1792
- Hansen K.W., Klein F., Christensen P.D., et al. Effects of captopril on ambulatory blood pressure, renal and cardiac function in microalbuminuric type 2 diabetic patients. Diabete Metab. 1994; 20: 485-493
- Hommel E., Jensen B., Parving H. Long-term effect of captopril on kidney function in normotensive insulin dependent diabetic patients (iddm) with diabetic nephropathy [abstract]. J Am Soc Nephrol. 1995; 6: 450
- Ito S., Kagawa T., Saiki T., et al. Efficacy and safety of imarikiren in patients with type 2 diabetes and microalbuminuria: a randomized, controlled trial. Clin J Am Soc Nephrol. 2019; 14: 354-363
- Jerums G., Allen T.J., Campbell D.J., et al. Long-term comparison between perindopril and nifedipine in normotensive patients with type 2 diabetes and microalbuminuria. Am J Kidney Dis. 2001; 37: 890-899
- Katayama S., Kikkawa R., Isogai S., et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 2 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract. 2002; 55: 113-121
- Laffel L.M., McGill J.B., Gans D.J. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 1995; 99: 497-504
- Lewis E.J., Hunsicker L.G., Bain R.P., et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993; 329: 1456-1462
- Lewis E.J., Hunsicker L.G., Clarke W.R. ,et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001; 345: 851-860
- Marre M., Leblanc H., Suarez L., et al. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. Br Med J (Clin Res Ed). 1987; 294: 1448-1452
- Marre M., Lievre M., Chatellier G., et al. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo-controlled trial (the DIABHYCAR study). BMJ. 2004; 328: 495
- Maschio G., Alberti D., Janin G., et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996; 334: 939-945
- Mathiesen E.R., Hommel E., Giese J., et al. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ. 1991; 303: 81-87
- Mauer M. Zinman B. Gardiner R. et al. Renal and retinal effects of enalapril and losartan in type 2 diabetes. N Engl J Med. 2009; 361: 40-51
- Muirhead N., Feagana B.F., Mahona J., et al. The effects of valsartan and captopril on reducing microalbuminuria in patients with type 2 diabetes mellitus: a placebo-controlled trial. Curr Ther Res. 1999; 60: 650-660
- Nankervis A., Nicholls K., Kilmartin G., et al. Effects of perindopril on renal histomorphometry in diabetic subjects with microalbuminuria: a 3-year placebo-controlled biopsy study. Metabolism. 1998; 47: 12-15
- O'Hare P., Bilbous R., Mitchell T., et al. Low-dose ramipril reduces microalbuminuria in type 2 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care. 2000; 23: 1823-1829
- Parving H.H., Hommel E., Damkjaer Nielsen M., et al. Effect of captopril on blood pressure and kidney function in normotensive insulin-dependent diabetics with nephropathy. BMJ. 1989; 299: 533-536
- Ravid M., Savin H., Jutrin I., et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med. 1993; 118: 577-581
- Romero R., Salinas I., Lucas A., et al. Renal function changes in microalbuminuric normotensive type II diabetic patients treated with angiotensin-converting enzyme inhibitors. Diabetes Care. 1993; 16: 597-600
- Sano T., Kawamura T., Matsumae H., et al. Effects of long-term enalapril treatment on persistent micro-albuminuria in well-controlled hypertensive and normotensive NIDDM patients. Diabetes Care. 1994; 17: 420-424
- Tong P.C., Ko G.T., Chan W.B., et al. The efficacy and tolerability of fosinopril in Chinese type 2 diabetic patients with moderate renal insufficiency. Diabetes Obes Metab. 2006; 8: 342-347
- Phillips P.J., Phillipou G., Bowen K.M., et al. Diabetic microalbuminuria and cilazapril. Am J Med. 1993; 94: 58S-60S
- Imai E., Chan J.C., Ito S., et al. Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: a multicentre, randomised, placebo-controlled study. Diabetologia. 2011; 54: 2978-298
- Mehdi U.F., Adams-Huet B., Raskin P., et al. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009; 20: 2641-2650
- Perrin N.E., Jaremko G.A., Berg U.B. The effects of candesartan on diabetes glomerulopathy: a double-blind, placebo-controlled trial. Pediatr Nephrol. 2008; 23: 947-954
- Tan K.C., Chow W.S., Ai V.H., et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab Res Rev. 2002; 18: 71-76
- Weil E.J., Fufaa, G. Jones L.I., et al. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabetes. Diabetes. 2013; 62: 3224-3231
- Makani H., Messerli F.H., Romero J., et al. Meta-analysis of randomized trials of angioedema as an adverse event of renin-angiotensin system inhibitors. Am J Cardiol. 2012; 110: 383-391
- Coresh J., Heerspink H.J.L., Sang Y., et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 2019; 7: 115-127
- Heerspink H.J.L., Greene T., Tighiouart H., et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019; 7: 128-139
- Overlack A. ACE inhibitor-induced cough and bronchospasm. Incidence, mechanisms and management. Drug Saf. 1996; 15: 72-78
- World Health Organization The selection and use of essential medicines: report of the WHO Expert Committee, 2017 (including the 20th WHO model list of essential medicines and the 6th model list of essential medicines for children). https://apps.who.int/iris/handle/10665/259481 Date accessed: August 14, 2020
- Haller H., Ito S., Izzo Jr. J.L., et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011; 364: 907-917
- Persson F., Lindhardt M., Rossing P., et al. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: a systematic review. J Renin Angiotensin Aldosterone Syst. 2016; (17.1470320316652047)
- Bakris G.L., Weir M.R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: Is this a cause for concern? Arch Intern Med. 2000; 160: 685-693
- Remuzzi G., Ruggenenti P., Perna A., et al. Continuum of renoprotection with losartan at all stages of type 2 diabetic nephropathy: a post hoc analysis of the RENAAL trial results. J Am Soc Nephrol. 2004; 15: 3117-3125
- Schmidt M., Mansfield K.E., Bhaskaran K., et al. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study. BMJ. 2017; 356: j791
- Bullo M., Tschumi S., Bucher B.S., et al. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension. 2012; 60: 444-450
- Hanssens M., Keirse M.J., Vankelecom F., et al. Fetal and neonatal effects of treatment with angiotensin-converting enzyme inhibitors in pregnancy. Obstet Gynecol. 1991; 78: 128-135
- Shotan A., Widerhorn J., Hurst A., et al. Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med. 1994; 96: 451-456
- Cooper W.O., Hernandez-Diaz S., Arbogast P.G., et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006; 354: 2443-2451
- Bateman B.T., Patorno E., Desai R.J., et al. Angiotensin-converting enzyme inhibitors and the risk of congenital malformations. Obstet Gynecol. 2017; 129: 174-184
- Reardon L.C., Macpherson D.S. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998; 158: 26-32
- Ahuja T.S. Freeman Jr., D. Mahnken J.D. et al. Predictors of the development of hyperkalemia in patients using angiotensin-converting enzyme inhibitors. Am J Nephrol. 2000; 20: 268-272
- Palmer B.F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004; 351: 585-59
- Linde C., Bakhai A., Furuland H., et al. Real-world associations of renin-angiotensin-aldosterone system inhibitor dose, hyperkalemia, and adverse clinical outcomes in a cohort of patients with new-onset chronic kidney disease or heart failure in the United Kingdom. J Am Heart Assoc. 2019; 8e012655
- Singhania G., Ejaz A.A., McCullough P.A., et al. Continuation of chronic heart failure therapies during heart failure hospitalization-a review. Rev Cardiovasc Med. 2019; 20: 111-120
- Clase C.M., Carrero J.J., Ellison D.H., et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020; 97: 42-61
- Ray K., Dorman S., Watson R. Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction. J Hum Hypertens. 1999; 13: 717-720
- Mukete B.N., Rosendorff C. Effects of low-dose thiazide diuretics on fasting plasma glucose and serum potassium-a meta-analysis. J Am Soc Hypertens. 2013; 7: 454-466
- Nilsson E., Gasparini A., Arnlov J., et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017; 245: 277-284
- Roush G.C., Ernst M.E., Kostis J.B., et al. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension. 2015; 65: 1041-1046
- Roush G.C., Sica D.A. Diuretics for hypertension: a review and update. Am J Hypertens. 2016; 29: 1130-1137
- Savage P.J., Pressel S.L., Curb J.D., et al. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: The Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998; 158: 741-751
- Tannen R.L. Diuretic-induced hypokalemia. Kidney Int. 1985; 28: 988-1000
- Wilmer W.A., Rovin B.H., Hebert C.J., et al. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003; 14: 3217-3232
- Bakris G.L., Pitt B., Weir M.R., et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA. 2015; 314: 151-161
- Spinowitz B.S., Fishbane S., Pergola P.E., et al. Sodium zirconium cyclosilicate among individuals with hyperkalemia: a 12-month phase 3 study. Clin J Am Soc Nephrol. 2019; 14: 798-809
- Fried L.F., Emanuele N., Zhang J.H., et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013; 369: 1892-1903
- Parving H.H., Brenner B.M., McMurray J.J., et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012; 367: 2204-2213
- Neal B., Perkovic V., Mahaffey K.W., et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377: 644-657
- Perkovic V., de Zeeuw D., Mahaffey K.W., et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018; 6: 691-704
- Wiviott S.D., Raz I., Bonaca M.P., et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380: 347-357
- Zinman B., Wanner C., Lachin J.M., et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373: 2117-212
- Cannon C.P., Pratley R., Dagogo-Jack S., et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020; 383: 1425-1435
- Zelniker T.A., Wiviott S.D., Raz I., et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393: 31-39
- Perkovic V. Jardine M.J. Neal B. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380: 2295-2306.Heerspink H.J.L. Stefansson B.V. Correa-Rotter R. et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383: 1436-1446
- Herrington W.G., Preiss D., Haynes R., et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J. 2018; 11: 749-761
- Bhatt D.L., Szarek M., Pitt B., et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021; 384: 129-139
- Neuen B.L., Young T., Heerspink H.J.L., et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019; 7: 845-854
- McGuire D.K., Shih W.J., Cosentino F., et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021; 6: 148-158
- Bhatia K., Jain V., Gupta K., et al. Prevention of heart failure events with sodium-glucose co-transporter 2 inhibitors across a spectrum of cardio-renal-metabolic risk. Eur J Heart Fail. 2021; 23: 1002-1008
- McMurray J.J.V., Solomon S.D., Inzucchi S.E., et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381: 1995-200
- Packer M., Anker S.D., Butler J., et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383: 1413-1424
- Anker S.D., Butler J., Filippatos G., et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021; 385: 1451-1461
- Bhatt D.L., Szarek M., Steg P.G., et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; 384: 117-128
- Vasilakou D., Karagiannis T., Athanasiadou E., et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013; 159: 262-274
- Wanner C., Heerspink H.J.L., Zinman B., et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial. J Am Soc Nephrol. 2018; 29: 2755-2769
- Wanner C., Lachin J.M. ,Inzucchi S.E., et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018; 137: 119-129
- Kosiborod M., Cavender M.A., Fu A.Z., et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation. 2017; 136: 249-259
- Zannad F., Ferreira J.P., Pocock S.J., et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020; 396: 819-829
- Jhund P.S., Solomon S.D., Docherty K.F., et al. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation. 2021; 143: 298-309
- Wanner C., Inzucchi S.E., Lachin J.M., et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375: 323-334
- Heerspink H.J.L., Karasik A., Thuresson M., et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020; 8: 27-35
- Williams S.M., Ahmed S.H. 1224-P: improving compliance with SGLT2 inhibitors by reducing the risk of genital mycotic infections: the outcomes of personal hygiene advice. Diabetes. 2019; 68 (1224-P)
- Huang C.Y., Lee J.K. Sodium-glucose co-transporter-2 inhibitors and major adverse limb events: a trial-level meta-analysis including 51 713 individuals. Diabetes Obes Metab. 2020; 22: 2348-2355
- Chang H.Y., Singh S., Mansour O. et al. Association between sodium-glucose cotransporter 2 inhibitors and lower extremity amputation among patients with type 2 diabetes. JAMA Intern Med. 2018; 178: 1190-1198
- Fralick M., Kim S.C., Schneeweiss S., et al. Risk of amputation with canagliflozin across categories of age and cardiovascular risk in three US nationwide databases: cohort study. BMJ. 2020; 370: m2812
- Barnett A.H., Mithal A., Manassie J., et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014; 2: 369-384
- Cherney D.Z.I., Zinman B., Inzucchi S.E., et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017; 5: 610-621
- Dekkers C.C.J., Wheeler D.C., Sjostrom C.D., et al. Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and stages 3b-4 chronic kidney disease. Nephrol Dial Transplant. 2018; 33: 2005-2011
- Fioretto P., Del Prato S., Buse J.B., et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab. 2018; 20: 2532-2540
- Grunberger G., Camp S., Johnson J., et al. Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: The VERTIS RENAL Randomized Study. Diabetes Ther. 2018; 9: 49-66
- Haneda M., Seino Y., Inagaki N., et al. Influence of renal function on the 52-week efficacy and safety of the sodium glucose cotransporter 2 inhibitor luseogliflozin in Japanese patients with type 2 diabetes mellitus. Clin Ther. 2016; 38: 66-88.e20
- Kaku K., Kiyosue A., Inoue S., et al. Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab. 2014; 16: 1102-1110
- Kashiwagi A., Takahashi H., Ishikawa H., et al. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015; 17: 152-160
- Kohan D.E., Fioretto P., Tang W., et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014; 85: 962-971
- Mancia G. ,Cannon C.P., Tikkanen I., et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016; 68: 1355-1364
- Pollock C., Stefansson B., Reyner D., et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019; 7: 429-441
- Pourshabanan P., Momeni A., Mahmoudnia L., et al. Effect of pioglitazone on decreasing of proteinuria in type 2 diabetic patients with nephropathy. Diabetes Metab Syndr. 2019; 13: 132-136
- Yale J.F., Bakris G., Cariou B., et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013; 15: 463-473
- Lo C., Toyama T., Wang Y., et al. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane Database Syst Rev. 2018; 9: CD011798
- Ikeda S., Takano Y., Schwab D., et al. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of tofogliflozin (A SELECTIVE SGLT2 Inhibitor) in patients with type 2 diabetes mellitus. Drug Res (Stuttg). 2019; 69: 314-322
- Kosiborod M.N., Esterline R., Furtado R.H.M., et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9: 586-594
- Nandula S.R., Kundu N., Awal H.B., et al. Role of canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovasc Diabetol. 2021; 20: 44
- Satirapoj B., Korkiatpitak P., Supasyndh O. Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial. Clin Kidney J. 2019; 12: 326-332
- Tanaka M., Yamakage H., Inoue T., et al. Beneficial effects of ipragliflozin on the renal function and serum uric acid levels in Japanese patients with type 2 diabetes: a randomized, 12-week, open-label, active-controlled trial. Intern Med. 2020; 59: 601-609
- Guyatt G.H., Oxman A.D., Kunz R., et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol. 2011; 64: 1283-1293
- Cai X., Shi L., Yang W., et al. Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes. J Med Econ. 2019; 22: 336-343
- Chin K.L., Ofori-Asenso R., Si S., et al. Cost-effectiveness of first-line versus delayed use of combination dapagliflozin and metformin in patients with type 2 diabetes. Sci Rep. 2019; 9: 3256
- McEwan P., Morgan A.R. ,Boyce R., et al. The cost-effectiveness of dapagliflozin in treating high-risk patients with type 2 diabetes mellitus: an economic evaluation using data from the DECLARE-TIMI 58 trial. Diabetes Obes Metab. 2021; 23: 1020-1029
- McEwan P., Bennett H., Khunti K., et al. Assessing the cost-effectiveness of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus: a comprehensive economic evaluation using clinical trial and real-world evidence. Diabetes Obes Metab. 2020; 22: 2364-2374
- Bakris G., Oshima M., Mahaffey K.W., et al. Effects of canagliflozin in patients with baseline eGFR №30 ml/min per 1.73m2: subgroup analysis of the randomized CREDENCE trial. Clin J Am Soc Nephrol. 2020; 15: 1705-1714
- Chertow G.M., Vart P., Jongs N., et al. Effects of dapagliflozin in stage 4 chronic kidney disease. J Am Soc Nephrol. 2021; 32: 2352-2361
- Das S.R., Everett B.M., Birtcher K.K., et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2018; 72: 3200-3224
- Buse J.B., Wexler D.J., Tsapas A., et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020; 43: 487-493
- Cosentino F., Grant P.J., Aboyans V., et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for Diabetes, Pre-diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020; 41: 255-323
- Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S175-S18
- American Diabetes Association Professional Practice Committee 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S144-S17
- Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S125-S143
- Zoungas S., de Boer I.H. SGLT2 inhibitors in diabetic kidney disease. Clin J Am Soc Nephrol. 2021; 16: 631-633
- Fulcher G., Matthews D.R., Perkovic V., et al. Efficacy and safety of canagliflozin used in conjunction with sulfonylurea in patients with type 2 diabetes mellitus: a randomized, controlled trial. Diabetes Ther. 2015; 6: 289-302
- Neal B., Perkovic V., de Zeeuw D., et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015; 38: 403-411
- Seidu S., Kunutsor S.K., Cos X., et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Prim Care Diabetes. 2018; 12: 265-283
- Kraus B.J., Weir M.R., Bakris G.L., et al. Characterization and implications of the initial estimated glomerular filtration rate 'dip' upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney Int. 2021; 99: 750-762
- Oshima M., Jardine M.J., Agarwal R. et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021; 99: 999-1009
- Staessen J., Lijnen P., Fagard R., et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981; 91: 457-465
- Kidney Disease: Improving Global Outcomes Diabetes Work Group KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020; 98: S1-S115
- Pitt B., Pfeffer M.A., Assmann S.F., et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014; 370: 1383-1392
- Pitt B., Zannad F., Remme W.J., et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999; 341: 709-717
- Chung E.Y., Ruospo M., Natale P., et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020; 10: CD007004
- Juurlink D.N., Mamdani M.M., Lee D.S., et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004; 351: 543-551
- Agarwal R., Kolkhof P., Bakris G., et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021; 42: 152-161
- Ito S., Kashihara N., Shikata K., et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol. 2020; 15: 1715-1727
- Bakris G.L., Agarwal R., Anker S.D., et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020; 383: 2219-2229
- Agarwal R., Joseph A., Anker S., et al. Hyperkalemia risk with finerenone: results from the FIDELIO-DKD Trial. J Am Soc Nephrol. 2021; 33: 225-237
- Pitt B., Filippatos G., Agarwal R., et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021; 385: 2252-2263
- Agarwal R., Filippatos G., Pitt B., et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2021; 43: 1-12
- Ito S., Shikata K., Nangaku M., et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: a randomized, double-blind, placebo-controlled, phase ii trial. Clin J Am Soc Nephrol. 2019; 14: 1161-1172
- Bakris G.L., Agarwal R., Chan J.C., et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015; 314: 884-894
- Bolignano D., Palmer S.C., Navaneethan S.D., et al. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014; 4: CD007004
- Chen Y., Liu P., Chen X., et al. Effects of different doses of irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with early type 2 diabetic nephropathy. Am J Med Sci. 2018; 355: 418-424
- Epstein M., Williams G.H., Weinberger M., et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006; 1: 940-951
- Minakuchi H., Wakino S., Urai H., et al. The effect of aldosterone and aldosterone blockade on the progression of chronic kidney disease: a randomized placebo-controlled clinical trial. Sci Rep. 2020; 10 16626
- Rossing K., Schjoedt K.J., Smidt U.M., et al. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005; 28: 2106-2112
- Schjoedt K.J., Rossing K., Juhl T.R., et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 2006; 70: 536-542
- van den Meiracker A.H., Baggen R.G., Pauli S., et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens. 2006; 24: 2285-2292
- Wada T., Inagaki M., Yoshinari T., et al. Apararenone in patients with diabetic nephropathy: results of a randomized, double-blind, placebo-controlled phase 2 dose-response study and open-label extension study. Clin Exp Nephrol. 2021; 25: 120-130
- Zelnick L.R., Weiss N.S., Kestenbaum B.R., et al. Diabetes and CKD in the United States population, 2009-2014. Clin J Am Soc Nephrol. 2017; 12: 1984-1990
- Chiu N. Aggarwal R., Bakris G.L., et al. Generalizability of FIGARO-DKD and FIDELIO-DKD trial criteria to the US population eligible for finerenone. J Am Heart Assoc. 2022; 11e025079
- Afkarian M., Zelnick L.R., Hall Y.N., et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016; 316: 602-610
- Xia J., Wang L., Ma Z., et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant. 2017; 32: 475-487
- Jhee J.H., Joo Y.S., Kee Y.K., et al. Secondhand smoke and CKD. Clin J Am Soc Nephrol. 2019; 14: 515-522
- Staplin N., Haynes R., Herrington W.G., et al. Smoking and adverse outcomes in patients with CKD: The Study of Heart and Renal Protection (SHARP). Am J Kidney Dis. 2016; 68: 371-380
- Dinakar C., O'Connor G.T., The health effects of electronic cigarettes. N Engl J Med. 2016; 375: 1372-1381
- Sawicki P.T., Muhlhauser I., Bender R., et al. Effects of smoking on blood pressure and proteinuria in patients with diabetic nephropathy. J Intern Med. 1996; 239: 345-352
- Pan A., Wang Y., Talaei M., et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: a meta-analysis and systematic review. Circulation. 2015; 132: 1795-1804
- Formanek P., Salisbury-Afshar E., Afshar M. Helping patients with ESRD and earlier stages of CKD to quit smoking. Am J Kidney Dis. 2018; 72: 255-266
- Kalkhoran S., Glantz S.A. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016; 4: 116-128
- Nakamura K., Nakagawa H., Murakami Y., et al. Smoking increases the risk of all-cause and cardiovascular mortality in patients with chronic kidney disease. Kidney Int. 2015; 88: 1144-1152
- Stead L.F., Koilpillai P., Fanshawe T.R., et al. Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database Syst Rev. 2016; 3: CD008286
- de Boer IH, DCCT/EDIC Research Group Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014; 37: 24-30
- DCCT/EDIC Research Group Effect of intensive diabetes treatment on albuminuria in type 2 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications Study. Lancet Diabetes Endocrinol. 2014; 2: 793-800
- de Boer I.H., Sun W., et al. DCCT/EDIC Research Group Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011; 365: 2366-2376
- Zoungas S., Arima H., Gerstein H.C., et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017; 5: 431-437
- Zoungas S., Chalmers J., Ninomiya T., et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia. 2012; 55: 636-643
- National Glycated Hemoglobin Standardization Program (NGSP) Harmonizing hemoglobin A1c testing. http://ngsp.org/critsumm.asp Date accessed: August 14, 2020
- College of American Pathologists (CAP) Hemoglobin A1c (5 Challenge) GH5-C 2019. CAP, 2019
- Freedman B.I., Shihabi Z.K., Andries L., et al. Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol. 2010; 31: 375-379
- Jung M., Warren B., Grams M., et al. Performance of non-traditional hyperglycemia biomarkers by chronic kidney disease status in older adults with diabetes: results from the Atherosclerosis Risk in Communities Study. J Diabetes. 2018; 10: 276-285
- Danne T., Nimri R., Battelino T., et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017; 40: 1631-1640
- Neelofar K., Ahmad J. A comparative analysis of fructosamine with other risk factors for kidney dysfunction in diabetic patients with or without chronic kidney disease. Diabetes Metab Syndr. 2019; 13: 240-244
- Williams M.E., Mittman N., Ma L., et al. The Glycemic Indices in Dialysis Evaluation (GIDE) Study: comparative measures of glycemic control in diabetic dialysis patients. Hemodial Int. 2015; 19: 562-571
- Bai Y., Yang R., Song Y., et al. Serum 1,5-anhydroglucitol concentrations remain valid as a glycemic control marker in diabetes with earlier chronic kidney disease stages. Exp Clin Endocrinol Diabetes. 2019; 127: 220-225
- Chen H.S., Wu T.E., Lin H.D., et al. Hemoglobin A1c and fructosamine for assessing glycemic control in diabetic patients with CKD stages 3 and 4. Am J Kidney Dis. 2010; 55: 867-874
- Divani M., Georgianos P.I., Didangelos T., et al. Comparison of glycemic markers in chronic hemodialysis using continuous glucose monitoring. Am J Nephrol. 2018; 47: 21-29
- Duan N., Zhu S.N., Li H.X., et al. Assessment of glycated albumin as a useful indicator for renal dysfunction in diabetic and nondiabetic population. Clin Lab. 2017; 63: 1129-1137
- Freedman B.I., Shenoy R.N., Planer J.A., et al. Comparison of glycated albumin and hemoglobin A1c concentrations in diabetic subjects on peritoneal and hemodialysis. Perit Dial Int. 2010; 30: 72-79
- Fukami K., Shibata R., Nakayama H., et al. Serum albumin-adjusted glycated albumin reflects glycemic excursion in diabetic patients with severe chronic kidney disease not treated with dialysis. J Diabetes Complications. 2015; 29: 913-917
- Harada K., Sumida K., Yamaguchi Y., et al. Relationship between the accuracy of glycemic markers and the chronic kidney disease stage in patients with type 2 diabetes mellitus. Clin Nephrol. 2014; 82: 107-114
- Hasslacher C., Kulozik F. Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: a comparative study with HbA1c and glycated albumin. J Diabetes. 2016; 8: 712-719
- Hayashi A., Takano K., Masaki T., et al. Distinct biomarker roles for HbA1c and glycated albumin in patients with type 2 diabetes on hemodialysis. J Diabetes Complications. 2016; 30: 1494-1499
- Okada T., Nakao T., Matsumoto H., et al. Influence of proteinuria on glycated albumin values in diabetic patients with chronic kidney disease. Intern Med. 2011; 50: 23-29
- Raghav A. Ahmad J., Noor S. et al. Glycated albumin and the risk of chronic kidney disease in subjects with type 2 diabetes: a study in North Indian population. Diabetes Metab Syndr. 2018; 12: 381-385
- Jung H.S., Kim H.I., Kim M.J., et al. Analysis of hemodialysis-associated hypoglycemia in patients with type 2 diabetes using a continuous glucose monitoring system. Diabetes Technol Ther. 2010; 12: 801-807
- Konya J., Ng J.M., Cox H., et al. Use of complementary markers in assessing glycaemic control in people with diabetic kidney disease undergoing iron or erythropoietin treatment. Diabet Med. 2013; 30: 1250-1254
- Lee S.Y., Chen Y.C., Tsai I.C., et al. Glycosylated hemoglobin and albumin-corrected fructosamine are good indicators for glycemic control in peritoneal dialysis patients. PLoS One. 2013; 8e57762
- Lo C., Lui M., Ranasinha S., et al. Defining the relationship between average glucose and HbA1c in patients with type 2 diabetes and chronic kidney disease. Diabetes Res Clin Pract. 2014; 104: 84-91
- Mirani M., Berra C., Finazzi S., et al. Inter-day glycemic variability assessed by continuous glucose monitoring in insulin-treated type 2 diabetes patients on hemodialysis. Diabetes Technol Ther. 2010; 12: 749-753
- Ng J.M., Cooke M., Bhandari S., et al. The effect of iron and erythropoietin treatment on the A1C of patients with diabetes and chronic kidney disease. Diabetes Care. 2010; 33: 2310-2313
- Ogawa T., Murakawa M., Matsuda A., et al. Endogenous factors modified by hemodialysis may interfere with the accuracy of blood glucose-measuring device. Hemodial Int. 2012; 16: 266-273
- Qayyum A., Chowdhury T.A., Oei E.L., et al. Use of continuous glucose monitoring in patients with diabetes mellitus on peritoneal dialysis: correlation with glycated hemoglobin and detection of high incidence of unaware hypoglycemia. Blood Purif. 2016; 41: 18-24
- Riveline J.P., Teynie J., Belmouaz S., et al. Glycaemic control in type 2 diabetic patients on chronic haemodialysis: use of a continuous glucose monitoring system. Nephrol Dial Transplant. 2009; 24: 2866-2871
- Vos F.E., Schollum J.B., Coulter C.V., et al. Assessment of markers of glycaemic control in diabetic patients with chronic kidney disease using continuous glucose monitoring. Nephrology (Carlton). 2012; 17: 182-188
- Whiting P. Rutjes A.W.,, Reitsma J.B., et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003; 3: 25
- Cho S.J., Roman G., Yeboah F., et al. The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem. 2007; 14: 1653-1671
- Little R.R., Rohlfing C.L., Tennill A.L., et al. Measurement of Hba(1C) in patients with chronic renal failure. Clin Chim Acta. 2013; 418: 73-76
- Tarim O., Kucukerdogan A., Gunay U., et al. Effects of iron deficiency anemia on hemoglobin A1c in type 2 diabetes mellitus. Pediatr Int. 1999; 41: 357-362
- Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S83-S96
- Peacock T.P., Shihabi Z.K., Bleyer A.J., et al. Comparison of glycated albumin and hemoglobin A1c levels in diabetic subjects on hemodialysis. Kidney Int. 2008; 73: 1062-1068
- Zelnick L.R., Batacchi Z.O., Dighe A., et al. Continuous glucose monitoring and use of alternative markers to assess glycemia in chronic kidney disease. Diabetes Care. 2020; 43: 2379-2387
- Battelino T., Danne T., Bergenstal R.M., et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019; 42: 1593-1603
- Bergenstal R.M., Beck R.W., Close K.L., et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care. 2018; 41: 2275-2280
- Kidney Disease Outcomes Quality Initiative (KDOQI) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007; 49: S12-S15
- Ciavarella A., Vannini P., Flammini M., et al. Effect of long-term near-normoglycemia on the progression of diabetic nephropathy. Diabete Metab. 1985; 11: 3-8
- Dahl-Jorgensen K. Near-normoglycemia and late diabetic complications. The Oslo Study. Acta Endocrinol Suppl (Copenh). 1987; 284: 1-38
- de Boer I.H., Gao X., Cleary P.A., et al. Albuminuria changes and cardiovascular and renal outcomes in type 2 diabetes: The DCCT/EDIC Study. Clin J Am Soc Nephrol. 2016; 11: 1969-1977
- Feldt-Rasmussen B., Mathiesen E.R., Deckert T. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet. 1986; 2: 1300-1304
- Steno Study Group Effect of 6 months of strict metabolic control on eye and kidney function in insulin-dependent diabetics with background retinopathy. Steno study group. Lancet. 1982; 1: 121-124
- The Diabetes Control and Complications (DCCT) Research Group Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 1995; 47: 1703-1720
- Reichard P., Britz A., Cars I., et al. The Stockholm Diabetes Intervention Study (SDIS): 18 months' results. Acta Med Scand. 1988; 224: 115-122
- Abraira C., Emanuele N., Colwell J., et al. Glycemic control and complications in type II diabetes. Design of a feasibility trial. VA CS Group (CSDM). Diabetes Care. 1992; 15: 1560-1571
- Gerstein H.C., Miller M.E., et al. Action to Control Cardiovascular Risk in Diabetes Study Group Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008; 358: 2545-2559
- Crasto W., Morrison A.E., Gray L.J., et al. The Microalbuminuria Education Medication and Optimisation (MEMO) Study: 4 years follow-up of multifactorial intervention in high-risk individuals with type 2 diabetes. Diabet Med. 2019; 37: 286-297
- Duckworth W., Abraira C., Moritz T., et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009; 360: 129-139
- Gaede P., Vedel P,. Parving H.H., et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999; 353: 617-622
- Patel A. MacMahon S., et al. ADVANCE Collaborative Group Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008; 358: 2560-2572
- UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352: 854-865
- UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352: 837-853
- Scopus (18846) Currie C.J., Peters J.R., Tynan A., et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010; 375: 481-489
- Holman R.R., Paul S.K., Bethel M.A., et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008; 359: 1577-1589
- Nathan D.M., Cleary P.A., Backlund J.Y., et al. Intensive diabetes treatment and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2005; 353: 2643-2653
- Ruospo M., Saglimbene V.M., Palmer S.C. et al. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev. 2017; 6: CD010137
- Abraira C., Colwell J.A., Nuttall F.Q., et al. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes (VA CSDM). Results of the feasibility trial. Veterans Affairs Cooperative Study in Type II Diabetes. Diabetes Care. 1995; 18: 1113-1123
- Crasto W., Jarvis J., Khunti K., et al. Multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: the Microalbuminuria Education and Medication Optimisation (MEMO) Study. Diabetes Res Clin Pract. 2011; 93: 328-336
- Reichard P., Nilsson B.Y., Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993; 329: 304-309
- Ohkubo Y., Kishikawa H., Araki E., et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995; 28: 103-117
- Mottl A.K., Buse J.B., Ismail-Beigi F., et al. Long-term effects of intensive glycemic and blood pressure control and fenofibrate use on kidney outcomes. Clin J Am Soc Nephrol. 2018; 13: 1693-1702
- Nathan D.M., Genuth S., et al. Diabetes Control and Complications Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329: 977-986
- Beck R.W., Riddlesworth T., Ruedy K., et al. Effect of continuous glucose monitoring on glycemic control in adults with type 2 diabetes using insulin injections: The DIAMOND Randomized Clinical Trial. JAMA. 2017; 317: 371-378
- Lind M., Polonsky W., Hirsch I.B., et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 2 diabetes treated with multiple daily insulin injections: The GOLD Randomized Clinical Trial. JAMA. 2017; 317: 379-387
- Beck R.W., Bergenstal R.M., Riddlesworth T.D., et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019; 42: 400-405
- Brown S.A., Kovatchev B.P., Raghinaru D., et al. Six-month randomized, multicenter trial of closed-loop control in type 2 diabetes. N Engl J Med. 2019; 381: 1707-1717
- Bach K.E., Kelly J.T., Palmer S.C., et al. Healthy dietary patterns and incidence of CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2019; 14: 1441-1449
- Klahr S., Buerkert J., Purkerson M.L. Role of dietary factors in the progression of chronic renal disease. Kidney Int. 1983; 24: 579-587
- Joint WHO/FAO/UNU Expert Consultation Protein and Amino Acid Requirements in Human Nutrition. World Health Organization Technical Report Series, 2007
- Hahn D., Hodson E.M., Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev. 2018; 10: CD001892
- Brouhard B.H., LaGrone L. Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy. Am J Med. 1990; 89: 427-431
- Ciavarella A., Di Mizio G., Stefoni S., et al. Reduced albuminuria after dietary protein restriction in insulin-dependent diabetic patients with clinical nephropathy. Diabetes Care. 1987; 10: 407-413
- Dullaart R.P., Beusekamp B.J., Meijer S., et al. Long-term effects of protein-restricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care. 1993; 16: 483-492
- Dussol B., Iovanna C. Raccah D., et al. A randomized trial of low-protein diet in type 2 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. J Ren Nutr. 2005; 15: 398-406
- Hansen H.P., Tauber-Lassen E., Jensen B.R., et al. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002; 62: 220-228
- Jesudason D.R., Pedersen E., Clifton P.M. Weight-loss diets in people with type 2 diabetes and renal disease: a randomized controlled trial of the effect of different dietary protein amounts. Am J Clin Nutr. 2013; 98: 494-501
- Koya D., Haneda M., Inomata S., et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009; 52: 2037-2045
- Meloni C., Morosetti M., Suraci C., et al. Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? J Ren Nutr. 2002; 12: 96-101
- Meng Y., Bai H., Yu Q., et al. High-resistant starch, low-protein flour intervention on patients with early type 2 diabetic nephropathy: a randomized trial. J Ren Nutr. 2019; 29: 386-393
- Raal F.J., Kalk W.J., Lawson M., et al. Effect of moderate dietary protein restriction on the progression of overt diabetic nephropathy: a 6-mo prospective study. Am J Clin Nutr. 1994; 60: 579-585
- Velazquez Lopez L., Sil Acosta M.J., Goycochea Robles M.V., et al. Effect of protein restriction diet on renal function and metabolic control in patients with type 2 diabetes: a randomized clinical trial. Nutr Hosp. 2008; 23: 141-147
- Zeller K. Whittaker E. Sullivan L. et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991; 324: 78-84
- Evert A.B., Dennison M., Gardner C.D., et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019; 42: 731-754
- Hostetter T.H., Meyer T.W., Rennke H.G., et al. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 1986; 30: 509-517
- Yusuf S., Joseph P., Rangarajan S., et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2019; 10226: 795-808
- Chen X., Wei G., Jalili T., et al. The associations of plant protein intake with all-cause mortality in CKD. Am J Kidney Dis. 2016; 67: 423-430
- Haring B., Selvin E., Liang M., et al. Dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr. 2017; 27: 233-242
- Lew Q.J., Jafar T.H., Koh H.W., et al. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017; 28: 304-312
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3: 1-150
- Ikizler T.A., Burrowes J.D., Byham-Gray L.D., et al. KDOQI clinical practice guidelines for nutrition in CKD: 2020 update. Am J Kidney Dis. 2019; 76: S1-S107
- Bergstrom J. Nutrition and mortality in hemodialysis. J Am Soc Nephrol. 1995; 6: 1329-1341
- Blumenkrantz M.J., Gahl G.M., Kopple J.D., et al. Protein losses during peritoneal dialysis. Kidney Int. 1981; 19: 593-602
- Mozaffarian D., Fahimi S., Singh G.M., et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014; 371: 624-634
- Juraschek S.P., Miller 3rd E.R., Weaver C.M., et al. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol. 2017; 70: 2841-2848
- Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium; Oria M, Harrison M, Stallings VA, eds. Dietary reference intakes for sodium and potassium. Accessed August 14, 2020. https://doi.org/10.17226/25353
- De'Oliveira J.M., Price D.A., Fisher N.D., et al. Autonomy of the renin system in type II diabetes mellitus: dietary sodium and renal hemodynamic responses to ACE inhibition. Kidney Int. 1997; 52: 771-777
- Dodson P.M., Beevers M., Hallworth R., et al. Sodium restriction and blood pressure in hypertensive type II diabetics: randomised blind controlled and crossover studies of moderate sodium restriction and sodium supplementation. BMJ. 1989; 298: 227-230
- Ekinci E.I., Thomas G., Thomas D., et al. Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake. Diabetes Care. 2009; 32: 1398-1403
- Houlihan C.A., Allen T.J., Baxter A.L., et al. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care. 2002; 25: 663-671
- Imanishi M., Yoshioka K., Okumura M., et al. Sodium sensitivity related to albuminuria appearing before hypertension in type 2 diabetic patients. Diabetes Care. 2001; 24: 111-116
- Kwakernaak A.J., Krikken J.A., Binnenmars S.H., et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol. 2014; 2: 385-395
- Lopes de Faria J.B., Friedman R., de Cosmo S., et al. Renal functional response to protein loading in type 2 (insulin-dependent) diabetic patients on normal or high salt intake. Nephron. 1997; 76: 411-417
- Luik P.T., Hoogenberg K., Van Der Kleij F.G., et al. Short-term moderate sodium restriction induces relative hyperfiltration in normotensive normoalbuminuric type I diabetes mellitus. Diabetologia. 2002; 45: 535-541
- Miller J.A. Sympathetic vasoconstrictive responses to high- and low-sodium diets in diabetic and normal subjects. Am J Physiol. 1995; 269: R380-R383
- Miller J.A. Renal responses to sodium restriction in patients with early diabetes mellitus. J Am Soc Nephrol. 1997; 8: 749-755
- Muhlhauser I., Prange K., Sawicki P.T., et al. Effects of dietary sodium on blood pressure in IDDM patients with nephropathy. Diabetologia. 1996; 39: 212-219
- Petrie J.R., Morris A.D., Minamisawa K., et al. Dietary sodium restriction impairs insulin sensitivity in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1998; 83: 1552-1557
- Suckling R.J., He F.J., Macgregor G.A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010; 12: CD006763
- Trevisan R., Bruttomesso D., Vedovato M., et al. Enhanced responsiveness of blood pressure to sodium intake and to angiotensin II is associated with insulin resistance in IDDM patients with microalbuminuria. Diabetes. 1998; 47: 1347-1353
- Vedovato M., Lepore G., Coracina A., et al. Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: the role of insulin resistance. Diabetologia. 2004; 47: 300-303
- Yoshioka K., Imanishi M., Konishi Y., et al. Glomerular charge and size selectivity assessed by changes in salt intake in type 2 diabetic patients. Diabetes Care. 1998; 21: 482-486
- GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019; 393: 1958-1972
- Malta D., Petersen K.S., Johnson C., et al. High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: a regularly updated systematic review of salt and health outcomes (August 2016 to March 2017). J Clin Hypertens (Greenwich). 2018; 20: 1654-1665
- World Health Organization Guideline: sodium intake for adults and children, 2012. https://apps.who.int/iris/bitstream/handle/10665/77985/9789241504836_eng.pdf?sequence=1 Date accessed: August 14, 2020
- Powers M.A., Bardsley J., Cypress M., et al. Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Clin Diabetes. 2016; 34: 70-80
- Thomas M.C., Moran J., Forsblom C., et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 2 diabetes. Diabetes Care. 2011; 34: 861-866
- Zelle D.M., Klaassen G., van Adrichem E., et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol. 2017; 13: 152-168
- Navaneethan S.D., Kirwan J.P., Arrigain S., et al. Overweight, obesity and intentional weight loss in chronic kidney disease: NHANES 1999-2006. Int J Obes (Lond). 2012; 36: 1585-1590
- Beddhu S., Wei G., Marcus R.L., et al. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin J Am Soc Nephrol. 2015; 10: 1145-1153
- Pandey A., Garg S., Khunger M., et al. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. Circulation. 2015; 132: 1786-1794
- Sattelmair J., Pertman J., Ding E.L., et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011; 124: 789-795
- Lyden K., Boucher R., Wei G., et al. Targeting sedentary behavior in CKD: a pilot and feasibility randomized controlled trial. Clin J Am Soc Nephrol. 2021; 16: 717-726
- Beetham K.S., Krishnasamy R., Stanton T., et al. Effect of a 3-year lifestyle intervention in patients with chronic kidney disease: a randomized clinical trial. J Am Soc Nephrol. 2022; 33: 431-441
- Fletcher G.F., Landolfo C., Niebauer J., et al. Reprint of: promoting physical activity and exercise: JACC Health Promotion Series. J Am Coll Cardiol. 2018; 72: 3053-3070
- Kelly J.T., Su G. Zhang, et al. Modifiable lifestyle factors for primary prevention of CKD: a systematic review and meta-analysis. J Am Soc Nephrol. 2021; 32: 239-253
- Tran J., Ayers E., Verghese J., et al. Gait abnormalities and the risk of falls in CKD. Clin J Am Soc Nephrol. 2019; 14: 983-993
- Fried L.F., Lee J.S., Shlipak M., et al. Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J Am Geriatr Soc. 2006; 54: 750-756
- Roshanravan B., Robinson-Cohen C., Patel K.V., et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol. 2013; 24: 822-830
- Schrauben S.J., Hsu J.Y., Amaral S., et al. Effect of kidney function on relationships between lifestyle behaviors and mortality or cardiovascular outcomes: a pooled cohort analysis. J Am Soc Nephrol. 2021; 32: 663-675
- Johansen K.L., Painter P. Exercise in individuals with CKD. Am J Kidney Dis. 2012; 59: 126-134
- Heiwe S., Jacobson S.H. Exercise training in adults with chronic kidney disease. Cochrane Database Syst Rev. 2011; 10: CD003236
- Leehey D.J., Moinuddin I., Bast J.P., et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol. 2009; 8: 62
- Ekelund U., Steene-Johannessen J., Brown W.J., et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016; 388: 1302-1310
- Guthold R., Stevens G.A., Riley L.M., et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018; 6: e1077-e1086
- Biswas A., Oh P.I., Faulkner G.E., et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015; 162: 123-132
- Agarwal R., Light R.P. Physical activity and hemodynamic reactivity in chronic kidney disease. Clin J Am Soc Nephrol. 2008; 3: 1660-1668
- Bowlby W., Zelnick L.R., Henry C., et al. Physical activity and metabolic health in chronic kidney disease: a cross-sectional study. BMC Nephrol. 2016; 17: 187
- Kosmadakis G.C., John S.G. ,Clapp E.L., et al. Benefits of regular walking exercise in advanced pre-dialysis chronic kidney disease. Nephrol Dial Transplant. 2012; 27: 997-1004
- Robinson E.S., Fisher N.D., Forman J.P., et al. Physical activity and albuminuria. Am J Epidemiol. 2010; 171: 515-521
- Beddhu S., Baird B.C., Zitterkoph J., et al. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009; 4: 1901-1906
- Look AHEAD Research Group Effect of a long-term behavioral weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014; 2: 801-809
- Manfredini F., Mallamaci F., D'Arrigo G., et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. J Am Soc Nephrol. 2017; 28: 1259-1268
- Clarkson M.J., Bennett P.N., Fraser S.F., et al. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol. 2019; 316: F856-F872
- Pu J., Jiang Z., Wu W., et al. Efficacy and safety of intradialytic exercise in haemodialysis patients: a systematic review and meta-analysis. BMJ Open. 2019; 9e020633
- Watson E.L., Gould D.W., Wilkinson T.J., et al. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD. Am J Physiol Renal Physiol. 2018; 314: F1188-F1196
- Whaley-Connell A., Sowers J.R. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int. 2017; 92: 313-323
- WHO Expert Consultation Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004; 363: 157-163
- Chang A.R., Grams M.E., Ballew S.H., et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019; 364: k5301
- Bolignano D., Zoccali C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant. 2013; 28: iv82-iv98
- Navaneethan S.D., Yehnert H., Moustarah F., et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009; 4: 1565-1574
- Kalantar-Zadeh K., Abbott K.C., Salahudeen A.K., et al. Survival advantages of obesity in dialysis patients. Am J Clin Nutr. 2005; 81: 543-554
- Sattar N., Lee M.M.Y., Kristensen S.L., et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021; 9: 653-662
- Gerstein H.C., Sattar N., Rosenstock J., et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021; 385: 896-907
- Rosenstock J., Perkovic V., Johansen O.E., et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA. 2019; 321: 69-79
- Neumiller J.J., Alicic R.Z., Tuttle K.R. Therapeutic considerations for antihyperglycemic agents in diabetic kidney disease. J Am Soc Nephrol. 2017; 28: 2263-2274
- United Kingdom Prospective Diabetes Study (UKPDS) 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ. 1995; 310: 83-88
- Bennett W.L., Maruthur N.M., Singh S. ,et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011; 154: 602-613
- Maruthur N.M., Tseng E., Hutfless S., et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016; 164: 740-751
- Hong J., Zhang Y., Lai S., et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013; 36: 1304-1311
- Graham G.G., Punt J., Arora M., et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011; 50: 81-98
- Misbin R.I. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care. 2004; 27: 1791-1793
- Salpeter S.R., Greyber E., Pasternak G.A., et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010; 4: CD002967
- Inzucchi S.E., Lipska K.J., Mayo H., et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014; 312: 2668-2675
- US Food & Drug Administration. FDA Drug Safety Communication: FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function. www.fda.gov/Drugs/DrugSafety/ucm493244.htm Date accessed: August 14, 2020
- Crowley M.J., Diamantidis C.J., McDuffie J.R., et al. Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med. 2017; 166: 191-200
- Bailey C.J., Turner R.C. Metformin. N Engl J Med. 1996; 334: 574-579
- DeFronzo R.A., Goodman A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995; 333: 541-549
- Donnelly L.A., Morris A.D., Pearson E.R. Adherence in patients transferred from immediate release metformin to a sustained release formulation: a population-based study. Diabetes Obes Metab. 2009; 11: 338-342
- Garber A.J., Duncan T.G., Goodman A.M., et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997; 103: 491-497.Levy J. Cobas R.A. Gomes M.B. Assessment of efficacy and tolerability of once-daily extended release metformin in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2010; 2: 16
- Schwartz S., Fonseca V., Berner B., et al. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006; 29: 759-764
- Ji L., Liu J., Yang J., et al. Comparative effectiveness of metformin monotherapy in extended release and immediate release formulations for the treatment of type 2 diabetes in treatment-naive Chinese patients: analysis of results from the CONSENT trial. Diabetes Obes Metab. 2018; 20: 1006-1013
- Stephen J., Anderson-Haag T.L., Gustafson S., et al. Metformin use in kidney transplant recipients in the United States: an observational study. Am J Nephrol. 2014; 40: 546-553
- Vest L.S., Koraishy F.M., Zhang Z., et al. Metformin use in the first year after kidney transplant, correlates, and associated outcomes in diabetic transplant recipients: a retrospective analysis of integrated registry and pharmacy claims data. Clin Transplant. 2018; 32e13302
- Alnasrallah B., Goh T.L., Chan L.W., et al. Transplantation and diabetes (Transdiab): a pilot randomised controlled trial of metformin in impaired glucose tolerance after kidney transplantation. BMC Nephrol. 2019; 20: 147
- Reinstatler L., Qi Y.P., Williamson R.S., et al. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: the National Health and Nutrition Examination Survey, 1999-2006. Diabetes Care. 2012; 35: 327-333
- de Jager J., Kooy A., Lehert P., et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ. 2010; 340: c2181
- Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019; 394: 121-130
- Hernandez A.F., Green J.B., Janmohamed S., et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018; 392: 1519-1529
- Marso S.P., Bain S.C., Consoli A., et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375: 1834-1844
- Marso S.P., Daniels G.H., Brown-Frandsen K., et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375: 311-322
- Bethel M.A., Mentz R.J., Merrill P., et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL Trial. Diabetes Care. 2020; 43: 446-452
- Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019; 394: 131-138
- Holman R.R., Bethel M.A., Mentz R.J., et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 1228-1239
- Mann J.F.E., Orsted D.D., Brown-Frandsen K., et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 839-848
- Muskiet MHA, Tonneijck L., Huang Y., et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018; 6: 859-869
- Pfeffer M.A., Claggett B. Diaz R., et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015; 373: 2247-2257
- Tuttle K.R., Lakshmanan M.C., Rayner B., et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018; 6: 605-617
- Husain M., Birkenfeld A.L., Donsmark M., et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381: 841-851
- Mann J.F.E., Fonseca V., Mosenzon O., et al. Effects of liraglutide versus placebo on cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. Circulation. 2018; 138: 2908-2918
- Tuttle K.R., Rayner B., Lakshmanan M.C., et al. Clinical outcomes by albuminuria status with dulaglutide versus insulin glargine in participants with diabetes and CKD: AWARD-7 exploratory analysis. Kidney360. 2021; 2: 254-262
- US National Library of Medicine A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL Trial) (REMODEL). https://clinicaltrials.gov/ct2/show/NCT04865770 Date accessed: January 11, 2022
- Bettge K., Kahle M., Abd El Aziz M.S., et al. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes Metab. 2017; 19: 336-347
- Hanefeld M., Arteaga J.M., Leiter L.A., et al. Efficacy and safety of lixisenatide in patients with type 2 diabetes and renal impairment. Diabetes Obes Metab. 2017; 19: 1594-1601
- Bomholt T., Idorn T., Knop F.K., et al. The glycemic effect of liraglutide evaluated by continuous glucose monitoring in persons with type 2 diabetes receiving dialysis. Nephron. 2021; 145: 27-34
- Dailey G.E., Dex T.A., Roberts M., et al. Efficacy and safety of lixisenatide as add-on in patients with T2D aged >=70 years uncontrolled on basal insulin in the Getgoal-O Study [abstract]. Endocrine Pract. 2018; 24: 48
- Davies M.J., Bain S.C., Atkin S.L., et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care. 2016; 39: 222-230
- Idorn T., Knop F.K., Jorgensen M.B., et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and end-stage renal disease: an investigator-initiated, placebo-controlled, double-blind, parallel-group, randomized trial. Diabetes Care. 2016; 39: 206-213
- Linjawi S., Bode B.W., Chaykin L.B., et al. The efficacy of IDegLira (insulin degludec/liraglutide combination) in adults with type 2 diabetes inadequately controlled with a GLP-1 receptor agonist and oral therapy: DUAL III Randomized Clinical Trial. Diabetes Ther. 2017; 8: 101-114
- Mosenzon O., Blicher T.M., Rosenlund S., et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019; 7: 515-527
- von Scholten B.J., Persson F., Rosenlund S., et al. The effect of liraglutide on renal function: a randomized clinical trial. Diabetes Obes Metab. 2017; 19: 239-247
- Zhou L. Lu G., Shen Y. Renal protection of exenatide in patients with diabetic kidney disease in early stage. J Xi'an Jiaotong Univ (Med Sci). 2019; 40 ([in Chinese]): 967-972
- Vega-Hernandez G., Wojcik R., Schlueter M. Cost-effectiveness of liraglutide versus dapagliflozin for the treatment of patients with type 2 diabetes mellitus in the UK. Diabetes Ther. 2017; 8: 513-530
- Zueger P.M., Schultz N.M., Lee T.A. Cost effectiveness of liraglutide in type II diabetes: a systematic review. Pharmacoeconomics. 2014; 32: 1079-1091
- Boye K.S., Botros F.T., Haupt A., et al. Glucagon-like peptide-1 receptor agonist use and renal impairment: a retrospective analysis of an electronic health records database in the U.S. population. Diabetes Ther. 2018; 9: 637-650
- Alicic R.Z., Patakoti R., Tuttle K.R. Direct and indirect effects of obesity on the kidney. Adv Chronic Kidney Dis. 2013; 20: 121-127
- Shah P.P., Brady T.M., Meyers K.E.C., et al. Association of obesity with cardiovascular risk factors and kidney disease outcomes in primary proteinuric glomerulopathies. Nephron. 2021; 145: 245-255
- Bays H., Pi-Sunyer X., Hemmingsson J.U., et al. Liraglutide 3.0 mg for weight management: weight-loss dependent and independent effects. Curr Med Res Opin. 2017; 33: 225-229
- Chatterjee S., Davies M.J., Heller S., et al. Diabetes structured self-management education programmes: a narrative review and current innovations. Lancet Diabetes Endocrinol. 2018; 6: 130-142
- Steinsbekk A., Rygg L.O., Lisulo M., et al. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res. 2012; 12: 213
- Pillay J., Armstrong M.J., Butalia S., et al. Behavioral programs for type 2 diabetes mellitus: a systematic review and network meta-analysis. Ann Intern Med. 2015; 163: 848-860
- Fogelfeld L., Hart P., Miernik J., et al. Combined diabetes-renal multifactorial intervention in patients with advanced diabetic nephropathy: proof-of-concept. J Diabetes Complications. 2017; 31: 624-630
- Kopf S., Oikonomou D., von Eynatten M., et al. Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol. 2014; 51: 479-489
- Li T., Wu H.M., Wang F., et al. Education programmes for people with diabetic kidney disease. Cochrane Database Syst Rev. 2011; 6: CD007374
- Steed L., Lankester J., Barnard M., et al. Evaluation of the UCL diabetes self-management programme (UCL-DSMP): a randomized controlled trial. J Health Psychol. 2005; 10: 261-276
- Griva K. Rajeswari M. Nandakumar M. et al. The combined diabetes and renal control trial (C-DIRECT) a feasibility randomised controlled trial to evaluate outcomes in multi-morbid patients with diabetes and on dialysis using a mixed methods approach. BMC Nephrol. 2019; 20: 2
- Kazawa K., Osaki K., Rahman M.M., et al. Evaluating the effectiveness and feasibility of nurse-led distant and face-to-face interviews programs for promoting behavioral change and disease management in patients with diabetic nephropathy: a triangulation approach. BMC Nurs. 2020; 19: 16
- Zimbudzi E., Lo C., Misso M.L., et al. Effectiveness of self-management support interventions for people with comorbid diabetes and chronic kidney disease: a systematic review and meta-analysis. Syst Rev. 2018; 7: 84
- Shea B.J., Reeves B.C., Wells G., et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017; 358: j4008
- Barrett B.J., Garg A.X., Goeree R., et al. A nurse-coordinated model of care versus usual care for stage 3/4 chronic kidney disease in the community: a randomized controlled trial. Clin J Am Soc Nephrol. 2011; 6: 1241-1247
- Chan J.C., So W.Y., Yeung C.Y., et al. Effects of structured versus usual care on renal endpoint in type 2 diabetes: the SURE study: a randomized multicenter translational study. Diabetes Care. 2009; 32: 977-982
- McManus R.J. Mant J. Haque M.S. et al. Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease: the TASMIN-SR randomized clinical trial. JAMA. 2014; 312: 799-808
- Scherpbier-de Haan N.D., Vervoort G.M. van Weel C., et al. Effect of shared care on blood pressure in patients with chronic kidney disease: a cluster randomised controlled trial. Br J Gen Pract. 2013; 63: e798-e806
- Williams A., Manias E., Walker R., Gorelik A. A multifactorial intervention to improve blood pressure control in co-existing diabetes and kidney disease: a feasibility randomized controlled trial. J Adv Nurs. 2012; 68: 2515-2525
- McMurray S.D., Johnson G., Davis S., McDougall K. Diabetes education and care management significantly improve patient outcomes in the dialysis unit. Am J Kidney Dis. 2002; 40: 566-575
- Blakeman T., Blickem C., Kennedy A., et al. Effect of information and telephone-guided access to community support for people with chronic kidney disease: randomised controlled trial. PLoS One. 2014; 9e109135
- Curtin R.B., Walters B.A., Schatell D., et al. Self-efficacy and self-management behaviors in patients with chronic kidney disease. Adv Chronic Kidney Dis. 2008; 15: 191-205
- Chen S.H., Tsai Y.F., Sun C.Y., et al. The impact of self-management support on the progression of chronic kidney disease--a prospective randomized controlled trial. Nephrol Dial Transplant. 2011; 26: 3560-3566
- Teljeur C., Moran P.S., Walshe S., et al. Economic evaluation of chronic disease self-management for people with diabetes: a systematic review. Diabet Med. 2017; 34: 1040-1049
- Boren S.A., Fitzner K.A., Panhalkar P.S., et al. Costs and benefits associated with diabetes education: a review of the literature. Diabetes Educ. 2009; 35: 72-96
- UK Department of Health Structured patient education in diabetes. Report from the Patient Education Working Group. London, London, UK2005
- National Institute for Health and Care Excellence (NICE) Diabetes in adults. https://www.nice.org.uk/guidance/qs Date accessed: August 14, 2020
- NHS Digital National Diabetes Audit Report 1: Care Processes and Treatment Targets 2016-17. https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/national-diabetes-audit-report-1-care-processes-and-treatment-targets-2016-17 Date accessed: August 14, 2020
- NHS Digital. (National Diabetes Audit-Report 1 Care Processes and Treatment Targets) Date: 2017-18
- Chan J.C.N., Lim L.L., Luk A.O.Y., et al. From Hong Kong Diabetes Register to JADE Program to RAMP-DM for Data-Driven Actions. Diabetes Care. 2019; 42: 2022-2031
- Davies M.J., D'Alessio D.A., Fradkin J., et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018; 41: 2669-2701
- International Diabetes Federation IDF clinical practice recommendations for managing type 2 diabetes in primary care. https://www.idf.org/e-library/guidelines/128-idf-clinical-practice-recommendations-for-managing-type-2-diabetes-in-primary-care.html Date accessed: August 14, 2020
- International Diabetes Federation IDF Diabetes Altas. https://diabetesatlas.org/en/resources/ Date accessed: August 14, 2020
- Kong A.P., Yang X., Luk A., et al. Severe hypoglycemia identifies vulnerable patients with type 2 diabetes at risk for premature death and all-site cancer: the Hong Kong diabetes registry. Diabetes Care. 2014; 37: 1024-1031
- Miccoli R., Penno G., Del Prato S. Multidrug treatment of type 2 diabetes: a challenge for compliance. Diabetes Care. 2011; 34: S231-S235
- Zoungas S., Patel A., Chalmers J., et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010; 363: 1410-1418
- Epping-Jordan J.E., Pruitt S.D., Bengoa R., et al. Improving the quality of health care for chronic conditions. Qual Saf Health Care. 2004; 13: 299-305
- Lim L.L., Lau E.S.H., Kong A.P.S., et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care. 2018; 41: 1312-1320
- Seidu S., Achana F.A., Gray L.J., et al. Effects of glucose-lowering and multifactorial interventions on cardiovascular and mortality outcomes: a meta-analysis of randomized control trials. Diabet Med. 2016; 33: 280-289.Leehey D.J. Collins E. Kramer H.J. et al. Structured exercise in obese diabetic patients with chronic kidney disease: a randomized controlled trial. Am J Nephrol. 2016; 44: 54-62
- Williams A.F., Manias E., Walker R.G. The devil is in the detail-a multifactorial intervention to reduce blood pressure in co-existing diabetes and chronic kidney disease: a single blind, randomized controlled trial. BMC Fam Pract. 2010; 11: 3
- Funnell M.M., Piatt G.A. Diabetes quality improvement: beyond glucose control. Lancet. 2012; 379: 2218-2219
- McGill M., Blonde L., Chan J.C.N., et al. The interdisciplinary team in type 2 diabetes management: challenges and best practice solutions from real-world scenarios. J Clin Transl Endocrinol. 2017; 7: 21-27
- Patil S.J., Ruppar T., Koopman R.J., et al. Peer support interventions for adults with diabetes: a meta-analysis of hemoglobin A1c outcomes. Ann Fam Med. 2016; 14: 540-551
- Trump L.J., Mendenhall T.J., Community health workers in diabetes care: a systematic review of randomized controlled trials. Fam Syst Health. 2017; 35: 320-340
- Rao Kondapally Seshasai S., Kaptoge S., Thompson A., et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011; 364: 829-841
- Wu H.J., Lau E.S.H., Ma R.C.W., et al. Secular trends in all-cause and cause-specific mortality in people with diabetes in Hong Kong, 2001-2016: a retrospective cohort study. Diabetologia. 2020; 63: 757-766
- Gaede P., Valentine W.J., Palmer A.J., et al. Cost-effectiveness of intensified versus conventional multifactorial intervention in type 2 diabetes: results and projections from the Steno-2 study. Diabetes Care. 2008; 31: 1510-1515
- Ko G.T., Yeung C.Y., Leung W.Y., et al. Cost implication of team-based structured versus usual care for type 2 diabetic patients with chronic renal disease. Hong Kong Med J. 2011; 17: 9-12
- Owolabi M.O., Yaria J.O., Daivadanam M., et al. Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countries-a systematic review. Diabetes Care. 2018; 41: 1097-1105
- Tonelli M., Muntner P., Lloyd A., et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012; 380: 807-814
- Luk A.O., Li X., Zhang Y., et al. Quality of care in patients with diabetic kidney disease in Asia: The Joint Asia Diabetes Evaluation (JADE) Registry. Diabet Med. 2016; 33: 1230-1239
- Bello A.K., Ronksley P.E., Tangri N., et al. Quality of chronic kidney disease management in Canadian primary care. JAMA Netw Open. 2019; 2e1910704
- Chan J.C. What can we learn from the recent blood glucose lowering megatrials?. J Diabetes Investig. 2011; 2: 1-5
- Ueki K., Sasako T., Okazaki Y., et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017; 5: 951-964
- Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. in: Graham R. Mancher, M. Miller, Wolman D.W. Clinical Practice Guidelines We Can Trust. National Academies Press (US), 2011
- Schunemann H.J., Fretheim A., Oxman A.D. Improving the use of research evidence in guideline development: 9. Grading evidence and recommendations. Health Res Policy Syst. 2006; 4: 21
- Brouwers M.C., Kho M.E., Browman G.P., et al. AGREE II: advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010; 63: 1308-1311
- Andad V., Kshirsagar A.V., Navaneethan S.D., et al. Direct renin inhibitors for preventing the progression of diabetic kidney disease (protocol). Cochrane Database Syst Rev. 2013; 9: CD010724
- Lo C., Jun M., Badve S.V., et al. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev. 2017; 2: CD009966
- McMahon E.J., Campbell K.L., Bauer J.D., et al. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015; 2: CD010070
- Natale P., Palmer S.C., Ruospo M., et al. Potassium binders for chronic hyperkalaemia in people with chronic kidney disease. Cochrane Database Syst Rev. 2020; 6: CD013165
- Palmer S.C., Maggo J.K., Campbell K.L., et al. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst Rev. 2017; 4: CD011998
- Higgins J.P.T., Thomas J., Chandler J., Cochrane Handbook for Systematic Reviews of Interventions. 2nd edition. Wiley, 2019
- Guyatt G.H., Oxman A.D., Schunemann H.J., et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011; 64: 380-382
- Higgins J.P., Altman D.G., Gotzsche P.C., et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: d5928
- Boutron I., Page M.J., Higgins J.P.T., et al. Chapter 7: Considering bias and conflicts of interest among the included studies. in: Higgins J.P.T., Thomas J., Chandler J., Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (2022). Cochrane, 2022 (Accessed August 18, 2022) www.training.cochrane.org/handbook
- Higgins J.P., Thompson S.G., Deeks J.J., et al. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557-560
- Brunetti M., Shemilt I., Pregno S., et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 2013; 66: 140-150
Другие статьи по теме