Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 22 №3 2020 год - Нефрология и диализ

Клиническая интеграция генетической диагностики в педиатрическую нефрологию. Обзор литературы


Приходина Л.С.

DOI: 10.28996/2618-9801-2020-3-293-311

Аннотация: Наследственные заболевания почек являются одной из ведущих причин хронической болезни почек в детском возрасте. Диагностика генетически-ассоциированных заболеваний почек на клиническом уровне нередко сложна вследствие выраженной генетической гетерогенности патологии и клинического полиморфизма проявлений. В последние годы в клинической практике применяется массовое параллельное секвенирование, разновидностью которого являются методы секвенирования нового поколения. Современное генетическое тестирование привело к улучшению диагностики генетически гетерогенных заболеваний, идентификации новых генов, что способствовало значительному прогрессу в понимании патогенетических механизмов, выявлению ранее нераспознанных фенотипов, а также реклассификации ряда заболеваний почек, включая COL4A-ассоциированную гломерулопатию и аутосомно-доминантные тубуло-интерстициальные заболевания почек. В обзоре представлены различные типы наследования моногенных заболеваний на примере патологии почек, сгруппированные из медицинской базы данных OMIM. Приводятся литературные сведения о современных молекулярно-генетических и цитогенетических методах диагностики, включая секвенирование по Сэнгеру, таргетные мультигенные панели, технологии массового параллельного секвенирования экзома и генома, а также хромосомный микроматричный анализ. Освещены в сравнительном аспекте преимущества и ограничения молекулярно-генетических методов диагностики. Представлены показания к генетическому обследованию при подозрении на наследственный характер патологии почек, обращается внимание на необходимость интерпретации данных генетических исследований в соответствие с международными и российскими рекомендациями профессиональных сообществ медицинских генетиков. В статье приводится алгоритм генетической диагностики с примерами клинического применения в нефрологической практике, включая обоснованные диагностические и терапевтические подходы. Представлены клинические ситуации, при которых проведение генетического тестирования может позволить пациентам избежать избежать нефробиопсии или иммуносупрессивной терапии с потенциальными побочными эффектами. Показано, что применение генетических методов исследования в педиатрической нефрологии является необходимым диагностическим инструментом для поиска причин наследственных заболеваний, выбора фармакотерапии, прогнозирования течения заболевания, а также медико-генетического консультирования семей пациентов и пренатальной диагностики наследственных заболеваний.

Для цитирования: Приходина Л.С. Клиническая интеграция генетической диагностики в педиатрическую нефрологию. Обзор литературы. Нефрология и диализ. 2020. 22(3):293-311. doi: 10.28996/2618-9801-2020-3-293-311


Весь текст



Ключевые слова: педиатрическая нефрология, генетика, дети, наследственные заболевания почек, секвенирование нового поколения, гены, pediatric nephrology, genetics, children, hereditary kidney diseases, next-generation sequencing, genes

Список литературы:
  1. Vivante A., Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 2016; 12: 133-146. DOI:10.1038/nrneph.2015.205
  2. Ingelfinger J.R., Kalantar-Zadeh K., Schaefer F. et al. World Kidney Day Steering Committee. World Kidney Day 2016: averting the legacy of kidney disease - focus on childhood. Pediatr. Nephrol. 2016; 31: 343-348. DOI: 10.1007/s00467-015-3255-7
  3. Devuyst O., Knoers N.V., Remuzzi G. et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014; 383: 1844-1859. DOI: 10.1016/S0140-6736(14)60659-0.
  4. Wuhl E., van Stralen K.J., Wanner C. et al. Renal replacement therapy for rare diseases affecting the kidney: an analysis of the ERA-EDTA Registry. Nephrol. Dial. Transplant. 2014; 29(Suppl. 4): 1-8. DOI: 10.1093/ndt/gfu030
  5. Arpegard J., Victorin A., Chang Z. et al. Comparison of heritability of Cystatin C- and creatinine-based estimates of kidney function and their relation to heritability of cardiovascular disease. J. Am. Heart Assoc. 2015; 4: e001467. DOI: 10.1161/JAHA.114.001467
  6. Lieske J.C., Turner S.T., Edeh S.N. et al. Heritability of urinary traits that contrib ute to nephrolithiasis. Clin. J. Am. Soc. Nephrol. 2014; 9: 943-950. DOI: 10.2215/CJN.08210813
  7. Moulin F., Ponte B., Pruijm M. et al. A population-based approach to assess the heritability and distribution of renal handling of electrolytes. Kidney Int. 2017; 92: 1536-1543. DOI: 10.1016/j.kint.2017.06.020
  8. McClellan W.M., Satko S.G., Gladstone E. et al. Individuals with a family history of ESRD are a high-risk population for CKD: implications for targeted surveillance and intervention activities. Am. J. Kidney Dis. 2009; 53: 100-106. DOI: 10.1053/j.ajkd.2008.07.059
  9. Skrunes R., Svarstad E., Reisaeter A.V. et al. Familial clustering of ESRD in the Norwegian population. Clin. J. Am. Soc. Nephrol. 2014; 9: 1692-1700. DOI: 10.2215/CJN.01680214
  10. Connaughton D.M., Bukhari S., Conlon P. et al. The Irish Kidney Gene Project - prevalence of family history in patients with kidney disease in Ireland. Nephron. 2015; 130: 293-301. DOI: 10.1159/000436983
  11. Gee H.Y., Otto E.A., Hurd T.W. et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85: 880-887. DOI: 10.1038/ki.2013.450
  12. Knoers N.V.A.M., Renkema K.Y. The genomic landscape of CAKUT; you gain some, you lose some. Kidney Int. 2019; 96: 267-269. DOI: 10.1016/j.kint.2019.03.017
  13. Park E. Genetic Basis of Steroid Resistant Nephrotic Syndrome. Child. Kidney Dis. 2019; 23(2): 86-92. https://doi.org/10.3339/jkspn.2019.23.2.86
  14. Li A.S., Ingham J.F., Lennon R. Genetic Disorders of the Glomerular Filtration Barrier. Clin. J. Am. Soc. Nephrol. 2020; 15 [Epub ahead of print] https://doi.org/10.2215/CJN.11440919
  15. van Eerde A.M., Krediet C.T.P., Rookmaaker M.B. et al. Pre-pregnancy advice in chronic kidney disease: do not forget genetic counseling. Kidney Int. 2016; 90: 905-907. DOI: 10.1016/j.kint.2016.05.035.
  16. Waters A., Lemaire M. Genetic Diagnosis of Renal Diseases: Basic Concepts and Testing. In: Pediatric Kidney Disease. Geary D.F., Schaefer F. eds. Springer-Verlag Berlin Heidelberg. 2016. P. 107-149.
  17. Online Mendelian Inheritance in Man, OMIM. An online catalog of Human Genes and Genetic Disorders [Electronic resource]. 2020. Available at: http://omim.org. (дата обращения: 26.06.2020).
  18. Kestila M., Lenkkeri U., Mannikko M. et al. Positionally cloned gene for a novel glomerular protein - nephrin - is mutated in congenital nephrotic syndrome. Mol. Cell. 1998; 1: 575-82. DOI: 10.1016/s1097-2765(00)80057-x
  19. Boute N., Gribouval O., Roselli S. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genet. 2000; 24: 349-354. DOI: 10.1038/74166
  20. Mochizuki T., Lemmink H.H., Mariyama M. et al. Identification of mutations in the alpha-3(IV) and alpha-4(IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet. 1994; 8: 77-81. DOI: 10.1038/ng0994-77
  21. Adeva M., El-Youssef M., Rossetti S. et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine. 2006; 85: 1-21. DOI: 10.1097/01.md.0000200165.90373.9a
  22. Lu H., Galeano M.C.R., Ott E. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 2017; 49: 1025-1034. DOI: 10.1038/ng.3871
  23. Town M., Jean G., Cherqui S. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genet. 1998; 18: 319-324. DOI: 10.1038/ng0498-319
  24. Nishiyama K., Funai T., Katafuchi R. et al. Primary hyperoxaluria type I due to a point mutation of T to C in the coding region of the serine:pyruvate aminotransferase gene. Biochem. Biophys. Res. Commun. 1991; 176: 1093-1099. DOI: 10.1016/0006-291x(91)90396-o
  25. Cramer S.D., Ferree P.M., Lin K. et al. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Molec. Genet. 1999; 8: 2063-2069. DOI: 10.1093/hmg/8.11.2063
  26. Belostotsky R., Seboun E., Idelson G.H. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 2010; 87: 392-399. DOI: 10.1016/j.ajhg.2010.07.023
  27. Schlingmann K.P., Kaufmann M., Weber S. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. New Eng. J. Med. 2011; 365: 410-421. DOI: 10.1056/NEJMoa1103864
  28. Schlingmann K.P., Ruminska J., Kaufmann M. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 2016; 27: 604-614. DOI: 10.1056/NEJMoa1103864
  29. Jeanpierre C., Denamur E., Henry I. et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am. J. Hum. Genet. 1998; 62: 824-833. DOI: 10.1086/301806
  30. Jefferson J.A., Lemmink H.H., Hughes A.E. et al. Autosomal dominant Alport syndrome linked to the type IV collagen alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol. Dial. Transplant. 1997; 12: 1595-1599. DOI: 10.1093/ndt/12.8.1595
  31. Horikawa Y., Iwasaki N., Hara M., Furuta H. et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat. Genet. 1997; 17: 384-385. DOI: 10.1038/ng1297-384
  32. European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994; 77: 881-894. DOI: 10.1016/0092-8674(94)90137-6
  33. Mochizuki T., Wu G., Hayashi T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996; 272: 1339-1342. DOI: 10.1126/science.272.5266.1339
  34. Porath B., Gainullin V.G., Cornec-Le Gall E. et al. Mutations in GANAB, encoding the glucosidase IIa lpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 2016; 98: 1193-1207. DOI: 10.1016/j.ajhg.2016.05.004
  35. Cornec-Le Gall E., Audrézet M.P., Chen J.M. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013; 24: 1006-1013. DOI: 10.1681/ASN.2012070650
  36. Dorval G., Kuzmuk V., Gribouval O. et al. TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am. J. Hum. Genet. 2019; 104:348-355. DOI: 10.1016/j.ajhg.2018.12.016
  37. Lloyd S.E., Pearce S.H.S., Fisher S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996; 379: 445-449. DOI: 10.1038/379445a0
  38. Hoopes R.R., Shrimpton A.E., Knohl S.J. et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 2005; 76: 260-267. DOI: 10.1086/427887
  39. Barker D.F., Hostikka S.L., Zhou J. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990; 248: 1224-1227. DOI: 10.1126/science.2349482
  40. HYP Consortium. A gene (HYP) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genet. 1995; 11: 130-136. DOI: 10.1038/ng1095-130
  41. Wilson F.H., Hariri A., Farhi A. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004; 306: 1190-1194. DOI: 10.1126/science.1102521
  42. Auton A., Abecasis G., Altshuler D. et al. A global reference for human genetic variation. Nature. 2015; 526: 68-74. https://doi.org/10.1038/nature15393
  43. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U S A. 1977; 74(12): 5463-5467. DOI: 10.1073/pnas.74.12.5463
  44. Katsanis S.H., Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 2013; 14: 415-426. DOI: 10.1038/nrg3493
  45. Rehm H.L. Bale SJ, Bayrak-Toydemir P. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013; 15: 733-747. DOI: 10.1038/gim.2013.92
  46. Rehm H.L. Disease-targeted sequencing: a cornerstone in the clinic. Nat. Rev. Genet. 2013; 14: 295-300. DOI: 10.1038/nrg3463.
  47. Xue Y., Ankala A., Wilcox W.R. et al. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet. Med. 2015; 17: 444-451. DOI: 10.1038/gim.2014.122
  48. Petersen B.S., Fredrich B., Hoeppner M.P. et al. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017; 18: 14. https://doi.org/10.1186/s12863-017-0479-5
  49. McCarthy H.J., Bierzynska A., Wherlock M. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2013; 8: 637-648. DOI: 10.2215/CJN.07200712
  50. Sadowski C.E., Lovric S., Ashraf S. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 2015; 26: 1279-1289. DOI: 10.1681/ASN.2014050489
  51. Halbritter J., Baum M., Hynes A.M. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 2015; 26: 543-551. DOI: 10.1681/ASN.2014040388
  52. Braun D.A., Lawson J.A., Gee H.Y. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 2016; 11: 664-672. DOI: 10.2215/CJN.07540715
  53. Halbritter J., Diaz K., Chaki M. et al. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J. Med. Genet. 2012; 49: 756-767. DOI: 10.1136/jmedgenet-2012-100973
  54. Schueler M., Halbritter J., Phelps I.G. et al. Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. J. Med. Genet. 2016; 53: 208-214. DOI: 10.1136/jmedgenet-2015-103304
  55. Hwang D.Y., Dworschak G.C., Kohl S. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014; 85: 1429-1433. DOI: 10.1038/ki.2013.508
  56. Kohl S., Hwang D.Y., Dworschak G.C. et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 2014; 25: 1917-1922. DOI: 10.1681/ASN.2013101103
  57. Lovric S., Fang H., Vega-Warner V. et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2014; 9: 1109-1116. DOI: 10.2215/CJN.0901081
  58. Hureaux M., Ashton E., Dahan K. et al. High-throughput sequencing contributes to the diagnosis of tubulopathies and familial hypercalcemia hypocalciuria in adults. Kidney Int. 2019; 96: 1408-1416. DOI: 10.1016/j.kint.2019.08.027
  59. Ashton E.J., Legrand A., Benoit V. et al. Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney Int. 2018; 93: 961-967. DOI: 10.1016/j.kint.2017.10.016
  60. Moriniere V., Dahan K., Hilbert P. et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J. Am. Soc. Nephrol. 2014; 25: 2740-2751. DOI: 10.1681/ASN.2013080912
  61. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и соавт. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. https://doi.org/10.25557/2073-7998.2019.02.3-23
  62. Prikhodina L., Papizh S., Stolyarevich E. et al. Next generation sequence in steroid-resistant nephrotic syndrome in children. Pediatr. Nephrol. 2019; 34: 2045. https://doi.org/10.1007/s00467-019-04325-4
  63. Приходина Л.С., Папиж С.В., Столяревич Е.С. и соавт. Инфантильный нефротический синдром: клинико-морфологическая характеристика, генетическая гетерогенность, исходы (опыт одного центра). Нефрология и диализ. 2019; 21(2): 234-242. DOI: 10.28996/2618-9801-2019-2-234-242
  64. Papizh S., Prikhodina L. Hypercalcemia as a cause of nephrocalcinosis in children with inherited disorders. Pediatr. Nephrol. 2019; 34: 2071. https://doi.org/10.1007/s00467-019-04325-4
  65. Groopman E.E., Marasa M., Cameron-Christie S. et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019; 380: 142-151. DOI: 10.1056/NEJMoa1806891
  66. Renkema K.Y., Stokman M.F., Giles R.H. et al. Next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 2014; 10: 433-444. DOI: 10.1038/nrneph.2014.95.
  67. Braun D.A., Hildebrandt F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017; 9(3): a028191. DOI: 10.1101/cshperspect.a02819
  68. Halbritter J., Porath J.D., Diaz K.A. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 2013; 132: 865-884. DOI: 10.1007/s00439-013-1297-0
  69. Braun D.A., Schueler M., Halbritter J. et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 2016; 89: 468-475. DOI: 10.1038/ki.2015.317
  70. Bierzynska A., McCarthy H.J., Soderquest K. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 2017; 91: 937-947. DOI: 10.1016/j.kint.2016.10.013.
  71. Audrezet M.P., Cornec-Le Gall E., Chen J.M. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 2012; 33: 1239-1250. DOI: 10.1002/humu.22103
  72. Heyer C.M., Sundsbak J.L., Abebe K.Z. et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2016; 27: 2872-2884. DOI: 10.1681/ASN.2015050583
  73. Gunay-Aygun M., Tuchman M., Font-Montgomery E. et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol. Genet. Metab. 2010; 99: 160-173. DOI: 10.1016/j.ymgme.2009.10.010
  74. Krall P., Pineda C., Ruiz P. et al. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease. Pediatr. Nephrol. 2014; 29: 223-234. DOI: 10.1007/s00467-013-2657-7
  75. Malone A.F., Phelan P.J., Hall G., Cetincelik U. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014; 86: 1253-1259. DOI: 10.1038/ki.2014.305
  76. Gast C., Pengelly R.J., Lyon M. et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2016; 31: 961-970. DOI: 0.1093/ndt/gfv325
  77. Prikhodina L., Lebedenkova M., Papizh S. et al. Collagen (COL4) mutations in steroid-resistant nephrotic syndrome (SRNS) in children. Pediatr. Nephrol. 2017; 32(9): 1615. DOI: 10.1007/s00467-017-3753-x
  78. Wuttke M., Seidl M., Malinoc A. et al. A COL4A5 mutation with glomerular disease and signs of chronic thrombotic microangiopathy. Clin. Kidney J. 2015; 8: 690-694. DOI: 10.1093/ckj/sfv091
  79. Nakata T., Ishida R., Mihara Y. et al. Steroid-resistant nephrotic syndrome as the initial presentation of nail-patella syndrome: a case of a de novo LMX1B mutation. BMC Nephrol. 2017; 18: 100. DOI: 10.1186/s12882-017-0516-7
  80. Choi M., Scholl U.I., Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA. 2009; 106: 19096-19101. DOI: 10.1073/pnas.0910672106
  81. Lata S., Marasa M., Li Y. et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann. Intern. Med. 2018; 168(2): 100-109. DOI: 10.7326/M17-1319
  82. Mandelker D., Schmidt R.J., Ankala A. et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet. Med. 2016; 18: 1282-1289. DOI: 10.1038/gim.2016.58
  83. Park J.Y., Clark P., Londin E. et al. Clinical exome performance for reporting secondary genetic findings. Clin. Chem. 2015; 61: 213-220. DOI: 10.1373/clinchem.2014.231456
  84. Bick D., Dimmock D. Whole exome and whole genome sequencing. Curr. Opin. Pediatr. 2011; 23: 594-600. DOI: 10.1097/MOP.0b013e32834b20e
  85. Stankiewicz P., Lupski J.R. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010; 61: 437-455. DOI: 10.1146/annurev-med-100708-204735
  86. Mele C., Lemaire M., Iatropoulos P. et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 2015; 10: 1011-1019. DOI: 10.2215/CJN.08520814
  87. King K., Flinter F.A., Nihalani V. et al. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome. Hum. Genet. 2002; 111: 548-554. DOI: 10.1007/s00439-002-0830-3
  88. Carroll C., Hunley T.E., Guo Y. et al. A novel splice site mutation in SMARCAL1 results in aberrant exon definition in a child with Schimke immunoosseous dysplasia. Am. J. Med. Genet. A. 2015; 167A:2260-2264. DOI: 10.1002/ajmg.a.37146
  89. Lo Y.F., Nozu K., Iijima K. et al. Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman's syndrome. Clin J Am Soc Nephrol. 2011; 6(3): 630-9. DOI: 10.2215/CJN.06730810
  90. Mallawaarachchi A.C., Hort Y., Cowley M.J. et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur. J. Hum. Genet. 2016; 24: 1584-1590. DOI: 10.1038/ejhg.2016.48
  91. Stavropoulos D.J., Merico D., Jobling R. et al. Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine. NPJ Genomics Med. 2016; 1: 15012. DOI: 10.1038/npjgenmed.2015.12.
  92. Carss K., Arno G., Erwood M. et al. Comprehensive rare var iant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017; 100: 75-90. DOI: 10.1016/j.ajhg.2016.12.003
  93. Kirby A., Gnirke A., Jaffe D.B. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 2013; 45: 299-303. DOI: 10.1038/ng.2543
  94. Blumenstiel B., DeFelice M., Birsoy O. et al. Development and validation of a mass spectrometry-based assay for the molecular diagnosis of mucin-1 kidney disease. J. Mol. Diagn. 2016; 18: 566-571. DOI: 10.1016/j.jmoldx.2016.03.003
  95. Cooper D.N., Chen J.M., Ball E.V. et al. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum. Mutat. 2010; 31: 631-655. DOI: 10.1002/humu.21260
  96. Ku C.S., Naidoo N., Pawitan Y. Revisiting Mendelian disorders through exome sequencing. Hum. Genet. 2011; 129: 351-370. DOI: 10.1007/s00439-011-0964-2
  97. Boycott K.M., Vanstone M.R., Bulman D.E. et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 2013; 14: 681-691. DOI: 10.1038/nrg3555
  98. Юров И.Ю., Воинова В.Ю., Ворсанова С.Г. и соавт. Молекулярные и клинические основы наследственных болезней. Учебное пособие. ИД: Академия Естествознания, 2018. 100 с. ISBN 978-5-91327-517-2
  99. Watson C.T., Marques-Bonet T., Sharp A.J. et al. The genetics of microdeletion and microduplication syndromes: an update. Annu. Rev. Genomics Hum. Genet. 2014; 15: 215-244. DOI: 10.1146/annurev-genom-091212-153408
  100. Carvalho C.M., Lupski J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016; 17: 224-238. DOI: 10.1038/nrg.2015.25
  101. Carter N.P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 2007; 39: 1621. DOI: 10.1038/ng2028
  102. Miller D.T., Adam M.P., Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010; 86: 749-764. DOI: 10.1016/j.ajhg.2010.04.006
  103. Kearney H.M., Thorland E.C., Brown K.K. et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011; 13: 680-685. DOI: 10.1097/GIM.0b013e3182217a3a
  104. Reddy U.M., Page G.P., Saade G.R. et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N. Engl. J. Med. 2012; 367: 2185-2193. DOI: 10.1056/NEJMoa1201569
  105. South S.T., Lee C., Lamb A.N. et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 2013; 15: 901-909. DOI: 10.1038/gim.2013.129
  106. Pinto D., Darvishi K., Shi X. et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 2011; 29: 512-520. DOI: 10.1038/nbt.1852
  107. Alkan C., Coe B.P., Eichler E.E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 2011; 12: 363-376. DOI: 10.1038/nrg2958
  108. Harambat J., van Stralen K.J., Kim J.J. et al. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 2012; 27: 363-373. DOI: 10.1007/s00467-011-1939-1
  109. Nicolaou N., Renkema K.Y., Bongers E.M. et al. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 2015; 11: 720-731. DOI: 10.1038/nrneph.2015.140
  110. Weber S., Landwehr C., Renkert M. et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol. Dial. Transplant. 2011; 26: 136-143. DOI: 10.1093/ndt/gfq400
  111. Sanna-Cherchi S., Kiryluk K., Burgess K.E. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 2012; 91: 987-997. DOI: 10.1016/j.ajhg.2012.10.007
  112. Caruana G., Wong M.N., Walker A. et al. Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 2015; 30: 487-495. DOI: 10.1007/s00467-014-2962-9
  113. Westland R., Verbitsky M., Vukojevic K. et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int. 2015; 88: 1402-1410. DOI: 10.1038/ki.2015.239
  114. Aymé S., Bockenhauer D., Day S. et al. Common elements in rare kidney diseases: conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017; 92: 796-808. DOI: 10.1016/j.kint.2017.06.018
  115. Groopman E.E., Rasouly H.M., Gharavi A.G. Genomic medicine for kidney disease. Nat. Rev. Nephrol. 2018; 14(2): 83-104. DOI: 10.1038/nrneph.2017.167
  116. Savige J., Colville D., Rheault M. et al. Alport syndrome in women and girls. Clin. J. Am. Soc. Nephrol. 2016; 11: 1713-1720. DOI: 10.2215/CJN.00580116
  117. Приходина Л.С., Папиж С.В., Баширова З.Р. с соавт. Являются ли мамы мальчиков с болезнью Дента бессимптомными носителями Х-сцепленной тубулопатии? Нефрология. 2018; 22(2): 74-80. DOI: https://doi.org/10.24884/1561-6274-2018-22-2-74-80
  118. Hwang Y.H., Conklin J., Chan W. et al. Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2016; 27: 1861-1868. DOI: 10.1681/ASN.2015060648
  119. Lentine K.L., Kasiske B.L., Levey A.S. et al. KDIGO clinical practice guideline on the evaluation and care of living kidney donors. Transplantation. 2017; 101: 1-109. DOI: 10.1097/TP.0000000000001769
  120. Gunay-Aygun M., Turkbey B.I., Bryant J. et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol. Genet. Metab. 2011; 104: 677-681. DOI: 10.1016/j.ymgme.2011.09.001
  121. Zhang J., Fuster D.G., Cameron M.A. et al. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am. J. Physiol. Renal Physiol. 2014; 307: 1063-1071. DOI: 10.1152/ajprenal.00408.2014
  122. Connaughton D.M., Kennedy C., Shril S. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019; 95(4): 914-928. DOI: 10.1016/j.kint.2018.10.031
  123. Wallis Y.P.S., McAnulty C., Bodmer D. et al. Practice guidelines for the evaluation of pathogenicity and the reporting of sequence variants in clinical molecular genetics. https://www.acgs.uk.com/media/10791/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-_finalpdf.pdf. Published September 2013.
  124. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5): 405-424. DOI: 10.1038/gim.2015.30
  125. Lipska B.S., Ranchin B., Iatropoulos P. et al. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 2014; 85: 1169-1178. DOI:10.1038/ki.2013.519
  126. Heeringa S.F., Chernin G., Chaki M. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 2011; 121: 2013-2024. DOI: 10.1172/JCI45693
  127. Ashraf S., Gee H.Y., Woerner S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 2013; 123: 5179-5189. DOI: 10.1172/JCI69000
  128. Kashtan C.E., Ding J., Garosi G. et al. Alport syndrome: a unified classification of genetic disorders of collagen IV a345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018; 93: 1045-1051. https://doi.org/10.1016/j.kint.2017.12.018
  129. Markello T.C., Bernardini I.M., Gahl W.A. Improved renal function in children with cystinosis treated with cysteamine. New Engl. J. Med. 1993; 328: 1157-1162. DOI: 10.1056/NEJM199304223281604
  130. Gahl W.A., Kuehl E.M., Iwata F. et al. Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eyedrops. Mol. Genet. Metab. 2000; 71: 100-120. DOI: 10.1006/mgme.2000.3062
  131. Blanchard A., Vargas-Poussou R., Peyrard S. et al. Effect of hydrochlorothiazide on urinary calcium excretion in Dent disease: an uncontrolled trial. Am. J. Kidney Dis. 2008; 52:1084-1095. DOI: 10.1053/j.ajkd.2008.08.021
  132. Raja K.A., Schurman S., D’mello R.G. et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J. Am. Soc. Nephrol. 2002; 13: 2938-2944. DOI: 10.1097/01.asn.0000036869.82685.f6
  133. Cochat P., Hulton S-A., Acquaviva C. et al. Nephrology Dialysis Transplantation. 2012; 27(5): 1729-1736. https://doi.org/10.1093/ndt/gfs078
  134. Schlingmann K.P., Cassar W., Konrad M. Juvenile onset IIH and CYP24A1 mutations. Bone Reports. 2018; 9: 42-46. https://doi.org/10.1016/j.bonr.2018.06.005
  135. Bergwitz C., Miyamoto K. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. - Eur. J. Physiol. 2019; 471: 149-163. https://doi.org/10.1007/s00424-018-2184-2
  136. Lopez-Garcia S.C., Emma F., Walsh S.B. et al. Treatment and long-term outcome in primary distal renal tubular acidosis. Nephrol Dial Transplant. 2019; 34(6): 981-991. DOI: 10.1093/ndt/gfy409
  137. Sikora P.; Zaniew M.; Haisch L. et al. Retrospective cohort study of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis due to CLDN16 mutations. Nephrol. Dial. Transplant. 2015; 30: 636-644. DOI: 10.1093/ndt/gfu374
  138. Bollée G., Harambat J., Bensman A. et al. Adenine Phosphoribosyltransferase Deficiency. Clin. J. Am. Soc. Nephrol. 2012; 7 (9) 1521-1527; DOI: https://doi.org/10.2215/CJN.02320312
  139. Pereira D.J., Schoolwerth A.C., Pais V.M. Cystinuria: Current concepts and future directions. Clinical Nephrology. 2015; 83(3): 138-146. DOI: 10.5414/cn108514
  140. Faguer S., Esposito L., Casemayou A. et al. Calcineurin Inhibitors Downregulate HNF-1β and May Affect the Outcome of HNF1B Patients After Renal Transplantation. Transplantation. 2016; 100(9): 1970-8. DOI: 10.1097/TP.0000000000000993
  141. Connaughton D.M., Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol. Dial. Transplant. 2020; 35(3): 390-397. DOI: 10.1093/ndt/gfz028

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"