<< Вернуться к списку статей журнала
Том 22 №3 2020 год - Нефрология и диализ
Клиническая интеграция генетической диагностики в педиатрическую нефрологию. Обзор литературы
Приходина Л.С.
DOI: 10.28996/2618-9801-2020-3-293-311
Аннотация: Наследственные заболевания почек являются одной из ведущих причин хронической болезни почек в детском возрасте. Диагностика генетически-ассоциированных заболеваний почек на клиническом уровне нередко сложна вследствие выраженной генетической гетерогенности патологии и клинического полиморфизма проявлений. В последние годы в клинической практике применяется массовое параллельное секвенирование, разновидностью которого являются методы секвенирования нового поколения. Современное генетическое тестирование привело к улучшению диагностики генетически гетерогенных заболеваний, идентификации новых генов, что способствовало значительному прогрессу в понимании патогенетических механизмов, выявлению ранее нераспознанных фенотипов, а также реклассификации ряда заболеваний почек, включая COL4A-ассоциированную гломерулопатию и аутосомно-доминантные тубуло-интерстициальные заболевания почек. В обзоре представлены различные типы наследования моногенных заболеваний на примере патологии почек, сгруппированные из медицинской базы данных OMIM. Приводятся литературные сведения о современных молекулярно-генетических и цитогенетических методах диагностики, включая секвенирование по Сэнгеру, таргетные мультигенные панели, технологии массового параллельного секвенирования экзома и генома, а также хромосомный микроматричный анализ. Освещены в сравнительном аспекте преимущества и ограничения молекулярно-генетических методов диагностики. Представлены показания к генетическому обследованию при подозрении на наследственный характер патологии почек, обращается внимание на необходимость интерпретации данных генетических исследований в соответствие с международными и российскими рекомендациями профессиональных сообществ медицинских генетиков. В статье приводится алгоритм генетической диагностики с примерами клинического применения в нефрологической практике, включая обоснованные диагностические и терапевтические подходы. Представлены клинические ситуации, при которых проведение генетического тестирования может позволить пациентам избежать избежать нефробиопсии или иммуносупрессивной терапии с потенциальными побочными эффектами. Показано, что применение генетических методов исследования в педиатрической нефрологии является необходимым диагностическим инструментом для поиска причин наследственных заболеваний, выбора фармакотерапии, прогнозирования течения заболевания, а также медико-генетического консультирования семей пациентов и пренатальной диагностики наследственных заболеваний.
Для цитирования: Приходина Л.С. Клиническая интеграция генетической диагностики в педиатрическую нефрологию. Обзор литературы. Нефрология и диализ. 2020. 22(3):293-311. doi: 10.28996/2618-9801-2020-3-293-311
Весь текст
Ключевые слова: педиатрическая нефрология,
генетика,
дети,
наследственные заболевания почек,
секвенирование нового поколения,
гены,
pediatric nephrology,
genetics,
children,
hereditary kidney diseases,
next-generation sequencing,
genesСписок литературы:- Vivante A., Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 2016; 12: 133-146. DOI:10.1038/nrneph.2015.205
- Ingelfinger J.R., Kalantar-Zadeh K., Schaefer F. et al. World Kidney Day Steering Committee. World Kidney Day 2016: averting the legacy of kidney disease - focus on childhood. Pediatr. Nephrol. 2016; 31: 343-348. DOI: 10.1007/s00467-015-3255-7
- Devuyst O., Knoers N.V., Remuzzi G. et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014; 383: 1844-1859. DOI: 10.1016/S0140-6736(14)60659-0.
- Wuhl E., van Stralen K.J., Wanner C. et al. Renal replacement therapy for rare diseases affecting the kidney: an analysis of the ERA-EDTA Registry. Nephrol. Dial. Transplant. 2014; 29(Suppl. 4): 1-8. DOI: 10.1093/ndt/gfu030
- Arpegard J., Victorin A., Chang Z. et al. Comparison of heritability of Cystatin C- and creatinine-based estimates of kidney function and their relation to heritability of cardiovascular disease. J. Am. Heart Assoc. 2015; 4: e001467. DOI: 10.1161/JAHA.114.001467
- Lieske J.C., Turner S.T., Edeh S.N. et al. Heritability of urinary traits that contrib ute to nephrolithiasis. Clin. J. Am. Soc. Nephrol. 2014; 9: 943-950. DOI: 10.2215/CJN.08210813
- Moulin F., Ponte B., Pruijm M. et al. A population-based approach to assess the heritability and distribution of renal handling of electrolytes. Kidney Int. 2017; 92: 1536-1543. DOI: 10.1016/j.kint.2017.06.020
- McClellan W.M., Satko S.G., Gladstone E. et al. Individuals with a family history of ESRD are a high-risk population for CKD: implications for targeted surveillance and intervention activities. Am. J. Kidney Dis. 2009; 53: 100-106. DOI: 10.1053/j.ajkd.2008.07.059
- Skrunes R., Svarstad E., Reisaeter A.V. et al. Familial clustering of ESRD in the Norwegian population. Clin. J. Am. Soc. Nephrol. 2014; 9: 1692-1700. DOI: 10.2215/CJN.01680214
- Connaughton D.M., Bukhari S., Conlon P. et al. The Irish Kidney Gene Project - prevalence of family history in patients with kidney disease in Ireland. Nephron. 2015; 130: 293-301. DOI: 10.1159/000436983
- Gee H.Y., Otto E.A., Hurd T.W. et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85: 880-887. DOI: 10.1038/ki.2013.450
- Knoers N.V.A.M., Renkema K.Y. The genomic landscape of CAKUT; you gain some, you lose some. Kidney Int. 2019; 96: 267-269. DOI: 10.1016/j.kint.2019.03.017
- Park E. Genetic Basis of Steroid Resistant Nephrotic Syndrome. Child. Kidney Dis. 2019; 23(2): 86-92. https://doi.org/10.3339/jkspn.2019.23.2.86
- Li A.S., Ingham J.F., Lennon R. Genetic Disorders of the Glomerular Filtration Barrier. Clin. J. Am. Soc. Nephrol. 2020; 15 [Epub ahead of print] https://doi.org/10.2215/CJN.11440919
- van Eerde A.M., Krediet C.T.P., Rookmaaker M.B. et al. Pre-pregnancy advice in chronic kidney disease: do not forget genetic counseling. Kidney Int. 2016; 90: 905-907. DOI: 10.1016/j.kint.2016.05.035.
- Waters A., Lemaire M. Genetic Diagnosis of Renal Diseases: Basic Concepts and Testing. In: Pediatric Kidney Disease. Geary D.F., Schaefer F. eds. Springer-Verlag Berlin Heidelberg. 2016. P. 107-149.
- Online Mendelian Inheritance in Man, OMIM. An online catalog of Human Genes and Genetic Disorders [Electronic resource]. 2020. Available at: http://omim.org. (дата обращения: 26.06.2020).
- Kestila M., Lenkkeri U., Mannikko M. et al. Positionally cloned gene for a novel glomerular protein - nephrin - is mutated in congenital nephrotic syndrome. Mol. Cell. 1998; 1: 575-82. DOI: 10.1016/s1097-2765(00)80057-x
- Boute N., Gribouval O., Roselli S. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genet. 2000; 24: 349-354. DOI: 10.1038/74166
- Mochizuki T., Lemmink H.H., Mariyama M. et al. Identification of mutations in the alpha-3(IV) and alpha-4(IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet. 1994; 8: 77-81. DOI: 10.1038/ng0994-77
- Adeva M., El-Youssef M., Rossetti S. et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine. 2006; 85: 1-21. DOI: 10.1097/01.md.0000200165.90373.9a
- Lu H., Galeano M.C.R., Ott E. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 2017; 49: 1025-1034. DOI: 10.1038/ng.3871
- Town M., Jean G., Cherqui S. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genet. 1998; 18: 319-324. DOI: 10.1038/ng0498-319
- Nishiyama K., Funai T., Katafuchi R. et al. Primary hyperoxaluria type I due to a point mutation of T to C in the coding region of the serine:pyruvate aminotransferase gene. Biochem. Biophys. Res. Commun. 1991; 176: 1093-1099. DOI: 10.1016/0006-291x(91)90396-o
- Cramer S.D., Ferree P.M., Lin K. et al. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Molec. Genet. 1999; 8: 2063-2069. DOI: 10.1093/hmg/8.11.2063
- Belostotsky R., Seboun E., Idelson G.H. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 2010; 87: 392-399. DOI: 10.1016/j.ajhg.2010.07.023
- Schlingmann K.P., Kaufmann M., Weber S. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. New Eng. J. Med. 2011; 365: 410-421. DOI: 10.1056/NEJMoa1103864
- Schlingmann K.P., Ruminska J., Kaufmann M. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 2016; 27: 604-614. DOI: 10.1056/NEJMoa1103864
- Jeanpierre C., Denamur E., Henry I. et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am. J. Hum. Genet. 1998; 62: 824-833. DOI: 10.1086/301806
- Jefferson J.A., Lemmink H.H., Hughes A.E. et al. Autosomal dominant Alport syndrome linked to the type IV collagen alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol. Dial. Transplant. 1997; 12: 1595-1599. DOI: 10.1093/ndt/12.8.1595
- Horikawa Y., Iwasaki N., Hara M., Furuta H. et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat. Genet. 1997; 17: 384-385. DOI: 10.1038/ng1297-384
- European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994; 77: 881-894. DOI: 10.1016/0092-8674(94)90137-6
- Mochizuki T., Wu G., Hayashi T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996; 272: 1339-1342. DOI: 10.1126/science.272.5266.1339
- Porath B., Gainullin V.G., Cornec-Le Gall E. et al. Mutations in GANAB, encoding the glucosidase IIa lpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 2016; 98: 1193-1207. DOI: 10.1016/j.ajhg.2016.05.004
- Cornec-Le Gall E., Audrézet M.P., Chen J.M. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013; 24: 1006-1013. DOI: 10.1681/ASN.2012070650
- Dorval G., Kuzmuk V., Gribouval O. et al. TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am. J. Hum. Genet. 2019; 104:348-355. DOI: 10.1016/j.ajhg.2018.12.016
- Lloyd S.E., Pearce S.H.S., Fisher S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996; 379: 445-449. DOI: 10.1038/379445a0
- Hoopes R.R., Shrimpton A.E., Knohl S.J. et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 2005; 76: 260-267. DOI: 10.1086/427887
- Barker D.F., Hostikka S.L., Zhou J. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990; 248: 1224-1227. DOI: 10.1126/science.2349482
- HYP Consortium. A gene (HYP) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genet. 1995; 11: 130-136. DOI: 10.1038/ng1095-130
- Wilson F.H., Hariri A., Farhi A. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004; 306: 1190-1194. DOI: 10.1126/science.1102521
- Auton A., Abecasis G., Altshuler D. et al. A global reference for human genetic variation. Nature. 2015; 526: 68-74. https://doi.org/10.1038/nature15393
- Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U S A. 1977; 74(12): 5463-5467. DOI: 10.1073/pnas.74.12.5463
- Katsanis S.H., Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 2013; 14: 415-426. DOI: 10.1038/nrg3493
- Rehm H.L. Bale SJ, Bayrak-Toydemir P. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013; 15: 733-747. DOI: 10.1038/gim.2013.92
- Rehm H.L. Disease-targeted sequencing: a cornerstone in the clinic. Nat. Rev. Genet. 2013; 14: 295-300. DOI: 10.1038/nrg3463.
- Xue Y., Ankala A., Wilcox W.R. et al. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet. Med. 2015; 17: 444-451. DOI: 10.1038/gim.2014.122
- Petersen B.S., Fredrich B., Hoeppner M.P. et al. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017; 18: 14. https://doi.org/10.1186/s12863-017-0479-5
- McCarthy H.J., Bierzynska A., Wherlock M. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2013; 8: 637-648. DOI: 10.2215/CJN.07200712
- Sadowski C.E., Lovric S., Ashraf S. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 2015; 26: 1279-1289. DOI: 10.1681/ASN.2014050489
- Halbritter J., Baum M., Hynes A.M. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 2015; 26: 543-551. DOI: 10.1681/ASN.2014040388
- Braun D.A., Lawson J.A., Gee H.Y. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 2016; 11: 664-672. DOI: 10.2215/CJN.07540715
- Halbritter J., Diaz K., Chaki M. et al. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J. Med. Genet. 2012; 49: 756-767. DOI: 10.1136/jmedgenet-2012-100973
- Schueler M., Halbritter J., Phelps I.G. et al. Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. J. Med. Genet. 2016; 53: 208-214. DOI: 10.1136/jmedgenet-2015-103304
- Hwang D.Y., Dworschak G.C., Kohl S. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014; 85: 1429-1433. DOI: 10.1038/ki.2013.508
- Kohl S., Hwang D.Y., Dworschak G.C. et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 2014; 25: 1917-1922. DOI: 10.1681/ASN.2013101103
- Lovric S., Fang H., Vega-Warner V. et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2014; 9: 1109-1116. DOI: 10.2215/CJN.0901081
- Hureaux M., Ashton E., Dahan K. et al. High-throughput sequencing contributes to the diagnosis of tubulopathies and familial hypercalcemia hypocalciuria in adults. Kidney Int. 2019; 96: 1408-1416. DOI: 10.1016/j.kint.2019.08.027
- Ashton E.J., Legrand A., Benoit V. et al. Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney Int. 2018; 93: 961-967. DOI: 10.1016/j.kint.2017.10.016
- Moriniere V., Dahan K., Hilbert P. et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J. Am. Soc. Nephrol. 2014; 25: 2740-2751. DOI: 10.1681/ASN.2013080912
- Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и соавт. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. https://doi.org/10.25557/2073-7998.2019.02.3-23
- Prikhodina L., Papizh S., Stolyarevich E. et al. Next generation sequence in steroid-resistant nephrotic syndrome in children. Pediatr. Nephrol. 2019; 34: 2045. https://doi.org/10.1007/s00467-019-04325-4
- Приходина Л.С., Папиж С.В., Столяревич Е.С. и соавт. Инфантильный нефротический синдром: клинико-морфологическая характеристика, генетическая гетерогенность, исходы (опыт одного центра). Нефрология и диализ. 2019; 21(2): 234-242. DOI: 10.28996/2618-9801-2019-2-234-242
- Papizh S., Prikhodina L. Hypercalcemia as a cause of nephrocalcinosis in children with inherited disorders. Pediatr. Nephrol. 2019; 34: 2071. https://doi.org/10.1007/s00467-019-04325-4
- Groopman E.E., Marasa M., Cameron-Christie S. et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019; 380: 142-151. DOI: 10.1056/NEJMoa1806891
- Renkema K.Y., Stokman M.F., Giles R.H. et al. Next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 2014; 10: 433-444. DOI: 10.1038/nrneph.2014.95.
- Braun D.A., Hildebrandt F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017; 9(3): a028191. DOI: 10.1101/cshperspect.a02819
- Halbritter J., Porath J.D., Diaz K.A. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 2013; 132: 865-884. DOI: 10.1007/s00439-013-1297-0
- Braun D.A., Schueler M., Halbritter J. et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 2016; 89: 468-475. DOI: 10.1038/ki.2015.317
- Bierzynska A., McCarthy H.J., Soderquest K. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 2017; 91: 937-947. DOI: 10.1016/j.kint.2016.10.013.
- Audrezet M.P., Cornec-Le Gall E., Chen J.M. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 2012; 33: 1239-1250. DOI: 10.1002/humu.22103
- Heyer C.M., Sundsbak J.L., Abebe K.Z. et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2016; 27: 2872-2884. DOI: 10.1681/ASN.2015050583
- Gunay-Aygun M., Tuchman M., Font-Montgomery E. et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol. Genet. Metab. 2010; 99: 160-173. DOI: 10.1016/j.ymgme.2009.10.010
- Krall P., Pineda C., Ruiz P. et al. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease. Pediatr. Nephrol. 2014; 29: 223-234. DOI: 10.1007/s00467-013-2657-7
- Malone A.F., Phelan P.J., Hall G., Cetincelik U. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014; 86: 1253-1259. DOI: 10.1038/ki.2014.305
- Gast C., Pengelly R.J., Lyon M. et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2016; 31: 961-970. DOI: 0.1093/ndt/gfv325
- Prikhodina L., Lebedenkova M., Papizh S. et al. Collagen (COL4) mutations in steroid-resistant nephrotic syndrome (SRNS) in children. Pediatr. Nephrol. 2017; 32(9): 1615. DOI: 10.1007/s00467-017-3753-x
- Wuttke M., Seidl M., Malinoc A. et al. A COL4A5 mutation with glomerular disease and signs of chronic thrombotic microangiopathy. Clin. Kidney J. 2015; 8: 690-694. DOI: 10.1093/ckj/sfv091
- Nakata T., Ishida R., Mihara Y. et al. Steroid-resistant nephrotic syndrome as the initial presentation of nail-patella syndrome: a case of a de novo LMX1B mutation. BMC Nephrol. 2017; 18: 100. DOI: 10.1186/s12882-017-0516-7
- Choi M., Scholl U.I., Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA. 2009; 106: 19096-19101. DOI: 10.1073/pnas.0910672106
- Lata S., Marasa M., Li Y. et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann. Intern. Med. 2018; 168(2): 100-109. DOI: 10.7326/M17-1319
- Mandelker D., Schmidt R.J., Ankala A. et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet. Med. 2016; 18: 1282-1289. DOI: 10.1038/gim.2016.58
- Park J.Y., Clark P., Londin E. et al. Clinical exome performance for reporting secondary genetic findings. Clin. Chem. 2015; 61: 213-220. DOI: 10.1373/clinchem.2014.231456
- Bick D., Dimmock D. Whole exome and whole genome sequencing. Curr. Opin. Pediatr. 2011; 23: 594-600. DOI: 10.1097/MOP.0b013e32834b20e
- Stankiewicz P., Lupski J.R. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010; 61: 437-455. DOI: 10.1146/annurev-med-100708-204735
- Mele C., Lemaire M., Iatropoulos P. et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 2015; 10: 1011-1019. DOI: 10.2215/CJN.08520814
- King K., Flinter F.A., Nihalani V. et al. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome. Hum. Genet. 2002; 111: 548-554. DOI: 10.1007/s00439-002-0830-3
- Carroll C., Hunley T.E., Guo Y. et al. A novel splice site mutation in SMARCAL1 results in aberrant exon definition in a child with Schimke immunoosseous dysplasia. Am. J. Med. Genet. A. 2015; 167A:2260-2264. DOI: 10.1002/ajmg.a.37146
- Lo Y.F., Nozu K., Iijima K. et al. Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman's syndrome. Clin J Am Soc Nephrol. 2011; 6(3): 630-9. DOI: 10.2215/CJN.06730810
- Mallawaarachchi A.C., Hort Y., Cowley M.J. et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur. J. Hum. Genet. 2016; 24: 1584-1590. DOI: 10.1038/ejhg.2016.48
- Stavropoulos D.J., Merico D., Jobling R. et al. Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine. NPJ Genomics Med. 2016; 1: 15012. DOI: 10.1038/npjgenmed.2015.12.
- Carss K., Arno G., Erwood M. et al. Comprehensive rare var iant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017; 100: 75-90. DOI: 10.1016/j.ajhg.2016.12.003
- Kirby A., Gnirke A., Jaffe D.B. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 2013; 45: 299-303. DOI: 10.1038/ng.2543
- Blumenstiel B., DeFelice M., Birsoy O. et al. Development and validation of a mass spectrometry-based assay for the molecular diagnosis of mucin-1 kidney disease. J. Mol. Diagn. 2016; 18: 566-571. DOI: 10.1016/j.jmoldx.2016.03.003
- Cooper D.N., Chen J.M., Ball E.V. et al. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum. Mutat. 2010; 31: 631-655. DOI: 10.1002/humu.21260
- Ku C.S., Naidoo N., Pawitan Y. Revisiting Mendelian disorders through exome sequencing. Hum. Genet. 2011; 129: 351-370. DOI: 10.1007/s00439-011-0964-2
- Boycott K.M., Vanstone M.R., Bulman D.E. et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 2013; 14: 681-691. DOI: 10.1038/nrg3555
- Юров И.Ю., Воинова В.Ю., Ворсанова С.Г. и соавт. Молекулярные и клинические основы наследственных болезней. Учебное пособие. ИД: Академия Естествознания, 2018. 100 с. ISBN 978-5-91327-517-2
- Watson C.T., Marques-Bonet T., Sharp A.J. et al. The genetics of microdeletion and microduplication syndromes: an update. Annu. Rev. Genomics Hum. Genet. 2014; 15: 215-244. DOI: 10.1146/annurev-genom-091212-153408
- Carvalho C.M., Lupski J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016; 17: 224-238. DOI: 10.1038/nrg.2015.25
- Carter N.P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 2007; 39: 1621. DOI: 10.1038/ng2028
- Miller D.T., Adam M.P., Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010; 86: 749-764. DOI: 10.1016/j.ajhg.2010.04.006
- Kearney H.M., Thorland E.C., Brown K.K. et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011; 13: 680-685. DOI: 10.1097/GIM.0b013e3182217a3a
- Reddy U.M., Page G.P., Saade G.R. et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N. Engl. J. Med. 2012; 367: 2185-2193. DOI: 10.1056/NEJMoa1201569
- South S.T., Lee C., Lamb A.N. et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 2013; 15: 901-909. DOI: 10.1038/gim.2013.129
- Pinto D., Darvishi K., Shi X. et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 2011; 29: 512-520. DOI: 10.1038/nbt.1852
- Alkan C., Coe B.P., Eichler E.E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 2011; 12: 363-376. DOI: 10.1038/nrg2958
- Harambat J., van Stralen K.J., Kim J.J. et al. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 2012; 27: 363-373. DOI: 10.1007/s00467-011-1939-1
- Nicolaou N., Renkema K.Y., Bongers E.M. et al. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 2015; 11: 720-731. DOI: 10.1038/nrneph.2015.140
- Weber S., Landwehr C., Renkert M. et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol. Dial. Transplant. 2011; 26: 136-143. DOI: 10.1093/ndt/gfq400
- Sanna-Cherchi S., Kiryluk K., Burgess K.E. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 2012; 91: 987-997. DOI: 10.1016/j.ajhg.2012.10.007
- Caruana G., Wong M.N., Walker A. et al. Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 2015; 30: 487-495. DOI: 10.1007/s00467-014-2962-9
- Westland R., Verbitsky M., Vukojevic K. et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int. 2015; 88: 1402-1410. DOI: 10.1038/ki.2015.239
- Aymé S., Bockenhauer D., Day S. et al. Common elements in rare kidney diseases: conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017; 92: 796-808. DOI: 10.1016/j.kint.2017.06.018
- Groopman E.E., Rasouly H.M., Gharavi A.G. Genomic medicine for kidney disease. Nat. Rev. Nephrol. 2018; 14(2): 83-104. DOI: 10.1038/nrneph.2017.167
- Savige J., Colville D., Rheault M. et al. Alport syndrome in women and girls. Clin. J. Am. Soc. Nephrol. 2016; 11: 1713-1720. DOI: 10.2215/CJN.00580116
- Приходина Л.С., Папиж С.В., Баширова З.Р. с соавт. Являются ли мамы мальчиков с болезнью Дента бессимптомными носителями Х-сцепленной тубулопатии? Нефрология. 2018; 22(2): 74-80. DOI: https://doi.org/10.24884/1561-6274-2018-22-2-74-80
- Hwang Y.H., Conklin J., Chan W. et al. Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2016; 27: 1861-1868. DOI: 10.1681/ASN.2015060648
- Lentine K.L., Kasiske B.L., Levey A.S. et al. KDIGO clinical practice guideline on the evaluation and care of living kidney donors. Transplantation. 2017; 101: 1-109. DOI: 10.1097/TP.0000000000001769
- Gunay-Aygun M., Turkbey B.I., Bryant J. et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol. Genet. Metab. 2011; 104: 677-681. DOI: 10.1016/j.ymgme.2011.09.001
- Zhang J., Fuster D.G., Cameron M.A. et al. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am. J. Physiol. Renal Physiol. 2014; 307: 1063-1071. DOI: 10.1152/ajprenal.00408.2014
- Connaughton D.M., Kennedy C., Shril S. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019; 95(4): 914-928. DOI: 10.1016/j.kint.2018.10.031
- Wallis Y.P.S., McAnulty C., Bodmer D. et al. Practice guidelines for the evaluation of pathogenicity and the reporting of sequence variants in clinical molecular genetics. https://www.acgs.uk.com/media/10791/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-_finalpdf.pdf. Published September 2013.
- Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5): 405-424. DOI: 10.1038/gim.2015.30
- Lipska B.S., Ranchin B., Iatropoulos P. et al. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 2014; 85: 1169-1178. DOI:10.1038/ki.2013.519
- Heeringa S.F., Chernin G., Chaki M. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 2011; 121: 2013-2024. DOI: 10.1172/JCI45693
- Ashraf S., Gee H.Y., Woerner S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 2013; 123: 5179-5189. DOI: 10.1172/JCI69000
- Kashtan C.E., Ding J., Garosi G. et al. Alport syndrome: a unified classification of genetic disorders of collagen IV a345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018; 93: 1045-1051. https://doi.org/10.1016/j.kint.2017.12.018
- Markello T.C., Bernardini I.M., Gahl W.A. Improved renal function in children with cystinosis treated with cysteamine. New Engl. J. Med. 1993; 328: 1157-1162. DOI: 10.1056/NEJM199304223281604
- Gahl W.A., Kuehl E.M., Iwata F. et al. Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eyedrops. Mol. Genet. Metab. 2000; 71: 100-120. DOI: 10.1006/mgme.2000.3062
- Blanchard A., Vargas-Poussou R., Peyrard S. et al. Effect of hydrochlorothiazide on urinary calcium excretion in Dent disease: an uncontrolled trial. Am. J. Kidney Dis. 2008; 52:1084-1095. DOI: 10.1053/j.ajkd.2008.08.021
- Raja K.A., Schurman S., D’mello R.G. et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J. Am. Soc. Nephrol. 2002; 13: 2938-2944. DOI: 10.1097/01.asn.0000036869.82685.f6
- Cochat P., Hulton S-A., Acquaviva C. et al. Nephrology Dialysis Transplantation. 2012; 27(5): 1729-1736. https://doi.org/10.1093/ndt/gfs078
- Schlingmann K.P., Cassar W., Konrad M. Juvenile onset IIH and CYP24A1 mutations. Bone Reports. 2018; 9: 42-46. https://doi.org/10.1016/j.bonr.2018.06.005
- Bergwitz C., Miyamoto K. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. - Eur. J. Physiol. 2019; 471: 149-163. https://doi.org/10.1007/s00424-018-2184-2
- Lopez-Garcia S.C., Emma F., Walsh S.B. et al. Treatment and long-term outcome in primary distal renal tubular acidosis. Nephrol Dial Transplant. 2019; 34(6): 981-991. DOI: 10.1093/ndt/gfy409
- Sikora P.; Zaniew M.; Haisch L. et al. Retrospective cohort study of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis due to CLDN16 mutations. Nephrol. Dial. Transplant. 2015; 30: 636-644. DOI: 10.1093/ndt/gfu374
- Bollée G., Harambat J., Bensman A. et al. Adenine Phosphoribosyltransferase Deficiency. Clin. J. Am. Soc. Nephrol. 2012; 7 (9) 1521-1527; DOI: https://doi.org/10.2215/CJN.02320312
- Pereira D.J., Schoolwerth A.C., Pais V.M. Cystinuria: Current concepts and future directions. Clinical Nephrology. 2015; 83(3): 138-146. DOI: 10.5414/cn108514
- Faguer S., Esposito L., Casemayou A. et al. Calcineurin Inhibitors Downregulate HNF-1β and May Affect the Outcome of HNF1B Patients After Renal Transplantation. Transplantation. 2016; 100(9): 1970-8. DOI: 10.1097/TP.0000000000000993
- Connaughton D.M., Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol. Dial. Transplant. 2020; 35(3): 390-397. DOI: 10.1093/ndt/gfz028
Другие статьи по теме