Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 18 №4 2016 год - Нефрология и диализ

Нефротический синдром: роль ангиопоэтинов в патогенезе


Ермоленко В.М. Филатова Н.Н.

Аннотация: Сосудистые эндотелиальные факторы роста, обеспечивающие ангио- и васкулогенез, играют важнейшую роль в физиологии и патологии человека. Влияя на функции эндотелия, ангиопоэтины способствуют образованию первичных кровеносных сосудов у эмбриона, а у взрослых способствуют заживлению ран, улучшают коллатеральную циркуляцию при инфаркте миокарда, ускоряя реабилитацию пациентов. В то же время ангиопоэтины индуцируют целый ряд неблагоприятных эффектов: развитие диабетической ретинопатии, макулярной дегенерации сетчатки, ускоряют рост и метастазирование злокачественных опухолей. В обзоре приводятся данные о роли агиопоэтинов (VEGF-A и ANGPTL4) в патогенезе основных проявлений нефротического синдрома - протеинурии, отеков, дислипидемии. Установлено, что экспрессия гипосиализированной формы ANGPTL4 в подоцитах способна вызывать развитие нефротического синдрома и гипертриглицеридемии у больных диабетической нефропатией и гломерулонефритом с минимальными изменениями. Однако на фоне продолжающихся потерь белка с мочой повышается экспрессия ANGPTL4 в сердце, печени, мышцах, уменьшающая протеинурию, но одновременно усугубляющая гипертриглицеридемию. В то же время мутантные формы ANGPTL4 индуцируют ремиссию нефротического синдрома, не ухудшая липидный профиль. Назначение больным N-ацетил-D-маннозамина способно трансформировать гипосиализированный ANGPTL4 в нормальный и существенно снижать протеинурию и предупреждать рецидивы нефротического синдрома.

Для цитирования: Ермоленко В.М., Филатова Н.Н. Нефротический синдром: роль ангиопоэтинов в патогенезе. Нефрология и диализ. 2016. 18(4):387-393. doi:


Весь текст



Ключевые слова: нефротический синдром, сосудистые эндотелиальные факторы роста, ангиопоэтины, nephrotic syndrome, vascular endothelial growth factor, angiopoietins

Список литературы:
  1. Andersen H, Friis UG, Hansen PB et al. Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells. Nephrol Dial Transplant. 2015. 30(5): 781-9.
  2. Banai S, Shweiki D, Pinson A et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res. 1994. 28(8): 1176-9.
  3. Bertuccio C, Veron D, Aggarwal PK et al. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem. 2011. 286(46): 39933-44.
  4. Buhl KB, Friis UG, Svenningsen P et al. Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension. 2012. 60(5): 1346-51.
  5. Butterworth MB, Zhang L, Heidrich EM et al. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem. 2012. 287(39): 32556-65.
  6. Caldwell RA, Boucher RC, Stutts MJ. Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol. 2005. 288(5): L813-9.
  7. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996. 380(6573): 435-9.
  8. Chandra M, Hoyer JR, Lewy JE. Renal function in rats with unilateral proteinuria produced by renal perfusion with aminonucleoside. Pediatr Res. 1981. 15(4 Pt 1): 340-4.
  9. Chraibi A, Vallet V, Firsov D et al. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol. 1998. 111(1): 127-38.
  10. Chugh SS, Clement LC, Mace C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis. 2012. 59(2): 284-92.
  11. Chugh SS, Mace C, Clement LC et al. Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease. Front Pharmacol. 2014. 5: 23.
  12. Clement LC, Avila-Casado C, Mace C et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011. 17(1): 117-22.
  13. Clement LC, Liu G, Perez-Torres I et al. Early changes in gene expression that influence the course of primary glomerular disease. Kidney Int. 2007. 72(3): 337-47.
  14. Clement LC, Mace C, Avila-Casado C et al. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med. 2014. 20(1): 37-46.
  15. De Sain-van der Velden MG, Kaysen GA, Barrett HA et al. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis. Kidney Int. 1998. 53(4): 994-1001.
  16. De Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol. 2001. 12(5): 993-1000.
  17. Deschenes G, Feraille E, Doucet A. Mechanisms of oedema in nephrotic syndrome: old theories and new ideas. Nephrol Dial Transplant. 2003. 18(3): 454-6.
  18. Du Bray ES. Metabolism: The Status of Lipoid Nephrosis as a Clinical Entity. Cal West Med. 1928. 29(1): 47-8.
  19. Earley LE, Forland M. Nephrotic syndrome. In: Strauss and Welt’s Diseases of the Kidney. Edited by Earley LE, Gottschalk CW, Boston, Little, Brown and Company. 1979, pp 765-813.
  20. Eremina V, Cui S, Gerber H et al. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol. 2006. 17(3): 724-35.
  21. Eremina V, Jefferson JA, Kowalewska J et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008. 358(11): 1129-36.
  22. Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003. 111(5): 707-16.
  23. Fan Q, Xing Y, Ding J, Guan N. Reduction in VEGF protein and phosphorylated nephrin associated with proteinuria in adriamycin nephropathy rats. Nephron Exp Nephrol. 2009. 111(4): e92-e102.
  24. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989. 161(2): 851-8.
  25. Geers AB, Koomans HA, Boer P, Dorhout Mees EJ. Plasma and blood volumes in patients with the nephrotic syndrome. Nephron. 1984. 38(3): 170-3.
  26. Georgiadi A, Lichtenstein L, Degenhardt T et al. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress. Circ Res. 2010. 106(11): 1712-21.
  27. Ghiggeri GM, Ginevri F, Candiano G et al. Characterization of cationic albumin in minimal change nephropathy. Kidney Int. 1987. 32(4): 547-53.
  28. Gurevich F, Perazella MA. Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med. 2009. 122(4): 322-8.
  29. Hara A, Wada T, Furuichi K et al. Blockade of VEGF accelerates proteinuria, via decrease in nephrin expression in rat crescentic glomerulonephritis. Kidney Int. 2006. 69(11): 1986-95.
  30. Hohenstein B, Hausknecht B, Boehmer K et al. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006. 69(9): 1654-61.
  31. Hughey RP, Bruns JB, Kinlough CL et al. Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem. 2004. 279(18): 18111-4.
  32. Ichikawa I, Rennke HG, Hoyer JR et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983. 71(1): 91-103.
  33. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002. 346(12): 913-23.
  34. Kampen KR. The mechanisms that regulate the localization and overexpression of VEGF receptor-2 are promising therapeutic targets in cancer biology. Anticancer Drugs. 2012. 23(4): 347-54.
  35. Kersten S, Lichtenstein L, Steenbergen E et al. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 2009. 29(6): 969-74.
  36. Kersten S, Mandard S, Tan NS et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000. 275(37): 28488-93.
  37. Kim I, Kim HG, Kim H et al. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. 2000. 346 Pt 3: 603-10.
  38. Kirk R. Nephrotic syndrome: Negative feedback loop reveals novel potential therapy. Nat Rev Nephrol. 2014. 10(2): 63.
  39. Kleyman TR, Hughey RP. Plasmin and sodium retention in nephrotic syndrome. J Am Soc Nephrol. 2009. 20(2): 233-4.
  40. Klisic J, Zhang J, Nief V et al. Albumin regulates the Na+/H+ exchanger 3 in OKP cells. J Am Soc Nephrol. 2003. 14(12): 3008-16.
  41. Koliwad SK, Kuo T, Shipp LE et al. Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem. 2009. 284(38): 25593-601.
  42. Koot BG, Houwen R, Pot DJ, Nauta J. Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review. Eur J Pediatr. 2004. 163(11): 664-70.
  43. Lerique B, Moulin B, Delpero C et al. High-affinity interaction of long-chain fatty acids with serum albumin in nephrotic syndrome. Clin Sci (Lond). 1995. 89(4): 417-20.
  44. Liang KH, Oveisi F, Vaziri ND. Gene expression of hepatic cholesterol 7 alpha-hydroxylase in the course of puromycin-induced nephrosis. Kidney Int. 1996. 49(3): 855-60.
  45. Mackenzie F, Ruhrberg C. Diverse roles for VEGF-A in the nervous system. Development. 2012. 139(8): 1371-80.
  46. Maharaj AS, Saint-Geniez M, Maldonado AE, D'Amore PA. Vascular endothelial growth factor localization in the adult. Am J Pathol. 2006. 168(2): 639-48.
  47. Muller F. Verhand. der Deutsch. Path. Gesellschaft 64-69 (1905).
  48. Nakagawa T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am J Physiol Renal Physiol. 2007. 292(6): F1665-72.
  49. Ness GC, Chambers CM. Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: the concept of cholesterol buffering capacity. Proc Soc Exp Biol Med. 2000. 224(1): 8-19.
  50. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999. 13(1): 9-22.
  51. Padua D, Zhang XH, Wang Q et al. TGF-beta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008. 133(1): 66-77.
  52. Palmer BF, Alpern RJ. Pathogenesis of edema formation in the nephrotic syndrome. Kidney Int Suppl. 59: S21-7.
  53. Passero CJ, Mueller GM, Rondon-Berrios H et al. Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem. 2008. 283(52): 36586-91.
  54. Peng JH, Feng Y, Rhodes PG. Down-regulation of phospholipase D2 mRNA in neonatal rat brainstem and cerebellum after hypoxia-ischemia. Neurochem Res. 2006. 31(10): 1191-6.
  55. Picard N, Eladari D, El Moghrabi S et al. Defective ENaC processing and function in tissue kallikrein-deficient mice. J Biol Chem. 2008. 283(8): 4602-11.
  56. Piedagnel R, Tiger Y, Lelongt B, Ronco PM. Urokinase (u-PA) is produced by collecting duct principal cells and is post-transcriptionally regulated by SV40 large-T, arginine vasopressin, and epidermal growth factor. J Cell Physiol. 2006. 206(2): 394-401.
  57. Reiser J. Filtering new facts about kidney disease. Nat Med. 2011. 17(1): 44-5.
  58. Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Interstitial inflammation, sodium retention, and the pathogenesis of nephrotic edema: a unifying hypothesis. Kidney Int. 2002. 62(4): 1379-84.
  59. Rothschild MA, Oratz M, Schreiber SS. Albumin synthesis. 1. N Engl J Med. 1972. 286(14): 748-57.
  60. Sabia PJ, Powers ER, Ragosta M et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med. 1992. 327(26): 1825-31.
  61. Schlondorff D. Putting the glomerulus back together: per aspera ad astra ("a rough road leads to the stars"). Kidney Int. 2014. 85(5): 991-8.
  62. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004. 65(6): 2003-17.
  63. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992. 359(6398): 843-5.
  64. Sison K, Eremina V, Baelde H et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J Am Soc Nephrol. 2010. 21(10): 1691-701.
  65. Staiger H, Haas C, Machann J et al. Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes. 2009. 58(3): 579-89.
  66. Stockmann C, Doedens A, Weidemann A et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008. 456(7223): 814-8.
  67. Svenningsen P, Bistrup C, Friis UG et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009. 20(2): 299-310.
  68. Vaziri ND, Gonzales EC, Shayestehfar B, Barton CH. Plasma levels and urinary excretion of fibrinolytic and protease inhibitory proteins in nephrotic syndrome. J Lab Clin Med. 1994. 124(1): 118-24.
  69. Vaziri ND, Liang KH. Down-regulation of hepatic LDL receptor expression in experimental nephrosis. Kidney Int. 1996. 50(3): 887-93.
  70. Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int. 2003. 63(5): 1756-63.
  71. Vaziri ND. Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int. 2003. 63(5): 1964-76.
  72. Veron D, Reidy KJ, Bertuccio C et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int. 2010. 77(11): 989-99.
  73. Vuagniaux G, Vallet V, Jaeger NF et al. Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes. J Gen Physiol. 2002. 120(2): 191-201.
  74. Wagner SN, Atkinson MJ, Wagner C et al. Sites of urokinase-type plasminogen activator expression and distribution of its receptor in the normal human kidney. Histochem Cell Biol. 1996. 105(1): 53-60.
  75. Watanabe D, Suzuma K, Suzuma I et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005. 139(3): 476-81.
  76. Wiesner G, Morash BA, Ur E, Wilkinson M. Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol. 2004. 180(3): R1-6.
  77. Yoon JC, Chickering TW, Rosen ED et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000. 20(14): 5343-9.
  78. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008. 4(1): 39-45.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"