<< Вернуться к списку статей журнала
Том 15 №2 2013 год - Нефрология и диализ
Медиаторы воспаления при остром повреждении почек (Обзор литературы)
Хван М.А.
Аннотация: Острое повреждение почек (ОПП) является независимым фактором риска заболеваемости и летальности. По современным представлениям основную роль в патофизиологии ОПП играет воспаление. В различных моделях почечного повреждения (ишемических, септических, нефротоксических) продемонстрированы морфологические и/или функциональные изменения сосудистого эндотелия и/или канальцевого эпителия, сопровождающиеся привлечением в очаг повреждения лейкоцитов, включая нейтрофилы, макрофаги, натуральные киллеры и лимфоциты, с последующей инфильтрацией этими клетками ткани почки. Повреждающие факторы индуцируют синтез эндотелием и канальцевым эпителием воспалительных медиаторов, таких как цитокины и хемокины, что усиливает привлечение лейкоцитов в почечную ткань. Таким образом, воспаление является определяющим механизмом в инициации ОПП и обуславливает его длительность. В данном обзоре представлены современные сведения о медиаторах воспаления, участвующих в патогенезе ОПП.
Для цитирования: Хван М.А. Медиаторы воспаления при остром повреждении почек (Обзор литературы). Нефрология и диализ. 2013. 15(2):106-115. doi:
Весь текст
Ключевые слова: острое повреждение почек,
воспаление,
цитокины,
acute kidney injury,
inflammation,
cytokinesСписок литературы:- Абрамова Т.В. Нейтрофилы при гломерулонефрите // Нефрология. 2005. Т. 9. № 2. С. 30–41.
- Александрова И.В., Марченкова Л.В., Рей С.И. и др. Острое почечное повреждение у больных с синдромом позиционного сдавления мягких тканей // Нефрология и диализ. 2008. Т. 10. № 3–4.
- Баринов Э.Ф., Сулаева О.Н., Лам М.М. Метаболиты арахидоновой кислоты – детерминанты паренхиматозно-стромальных отношений в почках в норме и при патологии // Нефрология. 2006. Т. 10. № 3. С. 14–22.
- Бобкова И.Н., Козловская Л.В., Ли О.А. Матриксные металлопротеиназы в патогенезе острых и хронических заболеваний почек // Нефрология и диализ. 2008. Т. 10. № 2. С. 105–111.
- Котова Л.И., Совалкин В.И. Прогностические факторы исходов острой почечной недостаточности // Нефрология и диализ. 2003. Т. 5. № 4. С. 387–390.
- Смирнов А.В., Каюков И.Г., Дегтерева О.А. и др. Проблемы диагностики и стратификации тяжести острого повреждения почек // Нефрология. 2009. Т. 13. № 3. С. 9–18.
- Сократов Н.В. Состояние систем гемостаза, калликреина и комплемента при заболеваниях почек // Нефрология. 2004. Т. 8. № 2. С. 40–43.
- Albelda S.M., Smith C.W., Ward P.A. Adhesion molecules and inflammatory injury // FASEB Journal. 1994. Vol. 8 (8). P. 504–512.
- Arumugam T.V., Okun E., Tang S.-C. et al. Toll-like receptors in ischemia-reperfusion injury // Shock. 2009. Vol. 32 (1). P. 4–16.
- Awad A.S., Ye H., Huang L. et al. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney // Am. J. Physiol. Renal. Physiol. 2006. Vol. 290. P. 1516–1524.
- Beck G.C., Ludwig F., Schulte J. et al. Fractalkine is not a major chemo-attractant for the migration of neutrophils across microvascular endothelium // Scandinavian J. of Immunol. 2003. Vol. 58 (2). P. 180–187.
- Bolisetty S., Agarwal A. Neutrophils in acute kidney injury: not neutral anymore // Kidney Int. 2009. Vol. 75 (7). P. 674–676.
- Bonvetre J.V. Ischemic acute renal failure / in: Textbook of Molecular Medicine. Jamison J.L. Cambridge, MA, Blackwell Science, 1996.
- Brodsky S.V., Yamamoto T., Tada T. et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. P. 1140–1149.
- Burne-Taney M.J., Ascon D.B., Daniels F. et al. B cell deficiency confers protection from renal ischemia reperfusion injury // J. Immunol. 2003. Vol. 171. P. 3210–3215.
- Burne-Taney M.J., Daniels F., El Ghandour A. et al. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure // J. Clin. Invest. 2001. Vol. 108 P. 1283–1290.
- Burne-Taney M.J., Yokota-Ikeda N., Rabb H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury // Am. J. Transplant. 2005. Vol. 5. P. 1186–1193.
- Caramelo C., Espinosa G., Manzarbeitia F. et al. Role of endothelium-related mechanisms in the pathophysiology of renal ischemia/reperfusion in normal rabbits // Circulation Research. 1996. Vol. 79 (5). P. 1031–1038.
- Cerwenka A., Lanier L.L. Natural killer cells, viruses and cancer // Nature Reviews Immunol. 2001. Vol. 1 (1). P. 41–49.
- Chiao H., Kohda Y., McLeroy P. et al. ?-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats // J. Clin. Invest. 1997. Vol. 99 (6). P. 1165–1172.
- Chiao H., Kohda Y., McLeroy P. et al. ?-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils // Kidney Int. 1998. Vol. 54 (3). P. 765–774.
- Cockwell P., Chakravorty S.J., Girdlestone J. et al. Fractalkine expression in human renal inflammation // Journal of Pathology. 2002. Vol. 196 (1). P. 85–90.
- Cugini D., Azzollini N., Gagliardini E. et al. Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion // Kidney Int. 2005. Vol. 67 (5). P. 1753–1761.
- Cunningham P.N., Dyanov H.M., Park P. et al. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney // J. Immunol. 2002. Vol. 168 (11). P. 5817 –5823.
- Cunningham P.N., Wang Y., Guo R. et al. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure // J. Immunol. 2004. Vol. 172 (4). P. 2629–2635.
- Daha M.R., Van Kooten C. Is the proximal tubular cell a pro-inflammatory cell? // Nephrol. Dial. Transplant. 2000. Vol. 15 (Suppl 6). P. 41–43.
- Day Y.J., Huang L., Ye H. et al. Renal ischemia-reperfusion injury and adenosine 2a receptor-mediated tissue protection: role of macrophages // Am. J. Physiol. Renal. Physiol. 2005. Vol. 288. P. 722–731.
- Day Y.J., Huang L., Ye H. et al. Renal ischemia-reperfusion injury and adenosine 2a receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma // J. Immunol. 2006. Vol. 176. P. 3108–3114.
- De Greef K.E., Ysebaert D.K., Dauwe S. et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia // Kidney Int. 2001. Vol. 60 (4). P. 1415–1427.
- Deckers J.G., De Haij S., Van Der Woude F.J. et al. IL-4 and IL-13 augment cytokine- and CD40-induced RANTES production by human renal tubular epithelial cells in vitro // J. Am. Soc. Nephrol. 1998. Vol. 9. P. 1187–1193.
- Deng J., Kohda Y., Chiao H. et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury // Kidney Int. 2001. Vol. 60 (6). P. 2118–2128.
- Devarajan P. Update on mechanisms of ischemic acute kidney injury // J. Am. Soc. Nephrol. 2006. Vol. 17 (6). P. 1503–1520.
- Doi K., Hu X., Yuen P.S.T. et al. AP214, an analogue of ?-melanocyte-stimulating hormone, ameliorates sepsis induced acute kidney injury and mortality // Kidney Int. 2008. Vol. 73 (11), P. 1266–1274.
- Dong X., Swaminathan S., Bachman L.A. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury // Kidney Int. 2007. Vol. 71 (7). P. 619–628.
- Dragun D., Hoff U., Park J.K. et al. Ischemia-reperfusion injury in renal transplantation is independent of the immunologic background // Kidney Int. 2000. Vol. 58 (5). P. 2166–2177.
- Edelstein C.L., Hoke T.S., Somerset H. et al. Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury // Nephr. Dial. Transpl. 2007. Vol. 22 (4). P. 1052–1061.
- El-Achkar T.M., Wu X.-R., Rauchman M. et al. Tamm–Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression // Am. J. Physiol. 2008. Vol. 295 (2). P. 534–544.
- Faubel S. Pulmonary complications after acute kidney injury // Adv. Chronic Kidney Dis. 2008. Vol. 15. P. 284–296.
- Faubel S., Lewis E.C., Reznikov L. et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1?, IL-18, IL-6, and neutrophil infiltration in the kidney // J. Pharm. Experim. Therap. 2007. Vol. 322 (1). P. 8–15.
- Faubel S., Ljubanovic D., Poole B. et al. Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure // Transplantation. 2005. Vol. 80 (5). P. 643–649.
- Faubel S., Ljubanovic D., Reznikov L. et al. Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis // Kidney Int. 2004. Vol. 66 (6). P. 2202 –2213.
- Frangogiannis N.G. Chemokines in ischemia and reperfusion // Thrombosis and Haemostasis. 2007. Vol. 97 (5). P. 738–747.
- Friedewald J.J., Rabb H. Inflammatory cells in ischemic acute renal failure // Kidney Int. 2004. Vol. 66 (2). P. 486–491.
- Furuichi K., Gao J.L., Horuk R. et al. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury // J. of Immunol. 2008. Vol. 181 (12). P. 8670–8676.
- Furuichi K., Wada T., Iwata Y. et al. Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury // J. Am. Soc. Nephr. 2003. Vol. 14 (4). P. 1066–1071.
- Goes N., Urmson J., Ramassar V. et al. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-?, transforming growth factor-? 1, granulocyte-macrophage colonystimulating factor, interleukin-2, and interleukin-10 // Transplantation. 1995. Vol. 59 (4). P. 565–572.
- Gold S.E., Day M., Jones S.S. et al. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells // Kidney Int. 2002. Vol. 61. P. 51–60.
- Haq M., Norman J., Saba S.R. et al. Role of IL-1 in renal ischemic reperfusion injury // J. Am. Soc. Nephr. 1998. Vol. 9 (4). P. 614–619.
- Hayashi H., Imanishi N., Ohnishi M. et al. X and anti-P-selectin antibody attenuate lipopolysaccharide-induced acute renal failure in rabbits // Nephron. 2001. Vol. 87 (4). P. 352–360.
- He Z., Dursun B., Oh D.-J. et al. Macrophages are not the source of injurious interleukin-18 in ischemic acute kidney injury in mice // Am. J. Physiol. 2009. Vol. 296 (3). P. 535–542.
- He Z., Lu L., Altmann C. et al. Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury // Am. J. Physiol. 2008. Vol. 295 (5). P. 1414–1421.
- Heinzelmann M., Mercer-Jones M.A., Passmore J.C. Neutrophils and renal failure // Am. J. Kidney Dis. 1999. Vol. 34 (2). P. 384–399.
- Hoste E.A., Schurgers M. Epidemiology of acute kidney injury: how big is the problem? // Crit. Care Med. 2008. Vol. 36. P. 145–151.
- Jayle C., Milinkevitch S., Favreau F. et al. Protective role of selectin ligand inhibition in a large animal model of kidney ischemia-reperfusion injury // Kidney Int. 2006. Vol. 69 (10). P. 1749–1755.
- Jo S.-K., Sung S.-A., Cho W.-Y. et al. Macrophages contribute to the initiation of ischaemic acute renal failure in rats // Nephr. Dial. Transpl. 2006. Vol. 21 (5). P. 1231–1239.
- Joon H.S., Humes H.D. Renal Cell Therapy and Beyond // Semin. Dial. 2009. Vol. 22 (6). P. 603–609.
- Kanai T., Watanabe M., Okazawa A. et al. Interleukin-18 and Crohn’s disease // Digestion. 2001. Vol. 63 (suppl. 1), P. 37–42.
- Kapper S., Beck G., Riedel S. et al. Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines // Transplantation. 2002. Vol. 74. P. 253–260.
- Kato N., Yuzawa Y., Kosugi T. et al. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion // J. Am. Soc. Nephr. 2009. Vol. 20 (7). P. 1565–1576.
- Kelly K.J., Williams Jr. W.W., Colvin R.B. et al. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury // Proceedings of the National Academy of Sciences of the United States of America. 1994. Vol. 91 (2), P. 812–816.
- Kelly K.J., Williams Jr. W.W., Colvin R.B. et al. Intracellular adhesion molecule-1 deficient mice are protected against ischemic renal injury // J. Clin. Invest. 1996. Vol. 97. P. 1056–1063.
- Kielar M.R., John R., Bennett M. et al. Maladaptive role of IL-6 in ischemic acute renal failure // J. Am. Soc. Nephr. 2005. Vol. 16 (11). P. 3315–3325.
- Kinsey G.R., Li L., Okusa M.D. Inflammation in acute kidney injury // Nephron. Exp. Nephrol. 2008. Vol. 109 (4) P. 102–107.
- Klausner J.M., Paterson I.S., Goldman G. et al. Post-ischemic renal injury is mediated by neutrophils and leukotrienes // Am. J. Physiol. 1989. Vol. 256 (5). P. 794–802.
- Klein C.L., Hoke T.S., Fang W.-F. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy // Kidney Int. 2008. Vol. 74 (7). P. 901– 909.
- Knotek M., Rogachev B., Wang W. et al. Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase // Kidney Int. 2001. Vol. 59 (6). P. 2243–2249.
- Kruger T., Benke D., Eitner F. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis // J. Am. Soc. Nephr. 2004. Vol. 15 (3). P. 613–621.
- Kurts C. Dendritic cells: not just another cell type in thekidney, but a complex immune sentinel network // Kidney Int. 2006. Vol. 70 (3). P. 412–414.
- Lameire N., Van Biesen W., Vanholder R. Acute renal failure // Lancet. 2005. Vol. 365. P. 417–430.
- Lee H.T., Kim M., Kim M. et al. Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice // Am. J. Physiol. 2007. Vol. 293 (3). P. 713–722.
- Lee S., Kim W., Moon S.-O. et al. Rosiglitazone ameliorates cisplatin-induced renal injury in mice // Nephr. Dial. Transpl. 2006. Vol. 21 (8). P. 2096–2105.
- Leemans J.C., Stokman G., Claessen N. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney // J. Clin. Invest. 2005. Vol. 115. P. 2894–2903.
- Li H., Nord E.P. CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. F1020–F1033.
- Li L., Huang L., Sung S.S. et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury // J. Immunol. 2007. Vol. 178. P. 5899–5911.
- Liew F.Y., McInnes I.B. Role of interleukin 15 and interleukin 18 in inflammatory response // Annals of the Rheum. Dis. 2002. Vol. 61 (suppl. 2), P. 100–102.
- Linas S., Whittenburg D., Repine J.E. Nitric oxide prevents neutrophil-mediated acute renal failure // Am. J. Physiol. 1997. Vol. 272 (1). P. 48–54.
- Liu M., Chien C.-C., Burne-Taney M. et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity // J. Am. Soc. Nephr. 2006. Vol. 17 (3). P. 765–774.
- Lu L.H., Oh D.-J., Dursun B. et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice // J. Pharmacol. Experim. Therap. 2007. Vol. 324 (1). P. 111–117.
- Melnikov V.Y., Ecder T., Fantuzzi G. et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure // J. Clin. Invest. 2001. Vol. 107 (9). P. 1145 –1152.
- Melnikov V.Y., Faubel S., Siegmund B. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice // J. Clin. Invest. 2002. Vol. 110 (8). P. 1083–1091.
- Miura M., Fu X., Zhang Q.-W. et al. Neutralization of Gro? and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury // Am. J. Pathol. 2001. Vol. 159 (6). P. 2137–2145.
- Mizutani A., Okajima K., Uchiba M. et al. Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation // Blood. 2000. Vol. 95 (12). P. 3781 –3787.
- Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues // Nature Reviews Immunology. 2002. Vol. 2 (12). P. 957–964.
- Nechemia-Arbely Y., Barkan D., Pizov G. et al. IL-6/IL-6R axis plays a critical role in acute kidney injury // J. Am. Soc. Nephr. 2008. Vol. 19 (6). P. 1106–1115.
- Nemoto T., Burne M.J., Daniels F. et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure // Kidney Int. 2001. Vol. 60 (6). P. 2205–2214.
- Nikolic-Paterson D.J., Atkins R.C. The role of macrophages in glomerulonephritis // Nephr. Dial. Transpl. 2001. Vol. 16 (suppl. 5). P. 3–7.
- Oh D.-J., Dursun B., He Z. et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice // Am. J. Physiol. 2008. Vol. 294 (1). P. 264–271.
- Paller M.S. Effect of neutrophil depletion on ischemic renal injury in the rat // J. Laboratory and Clin. Med. 1989. Vol. 113 (3). P. 379–386.
- Park P., Haas M., Cunningham P.N. et al. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. P. 352–357.
- Pino C.J., Yevzlin A.S., Lee K. et al. Cell-based approaches for the treatment of systemic inflammation // Nephrol. Dial. Transplant. 2012. Advance Access published November 9. From http://ndt.oxfordjournals.org.
- Pulskens W.P., Teske G.J., Butter L.M. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury // PLoS ONE. 2008. Vol. 3 (10). Article e3596.
- Rabb H. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice // Am. J. Physiol. Renal. Physiol. 2000. Vol. 279 (3). P. 525–531.
- Ramesh G., Reeves W.B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure // Am. J. Physiol. 2003. Vol. 285 (4). P. 610–618.
- Ramesh G., Reeves W.B. TNF-? mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity // J. Clin. Invest. 2002. Vol. 110 (6). P. 835–842.
- Rice J.C., Spence J.S., Yetman D.L. et al. Monocyte chemoattractant protein-1 expression correlates with monocyte infiltration in the post-ischemic kidney // Renal Failure. 2002. Vol. 24 (6). P. 703–723.
- Rouschop K.M.A., Roelofs J.J.T.H., Claessen N. et al. Protection against Renal ischemia reperfusion injury by CD44 disruption // J. Am. Soc. Nephr. 2005. Vol. 16 (7). P. 2034–2043.
- Safirstein R., Megyesi J., Saggi S.J. et al. Expression of cytokine-like genes JE and KC is increased during renal ischemia // Am. J. Physiol. 1991. Vol. 261 (6). P. 1095–1101.
- Segerer S., Nelson P.J., Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies // J. Am. Soc. Nephr. 2000. Vol. 11 (1). P. 152–176.
- Shigeoka A.A., Holscher T.D., King A.J. et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways // J. Immunol. 2007. Vol. 178 (10). P. 6252–6258.
- Shimoda N., Fukazawa N., Nonomura K. et al. Cathepsin G is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys // Am. J. Pathol. 2007. Vol. 170 (3). P. 930–940.
- Sigal L.H. Basic science for the clinician 33: interleukins of current clinical relevance – part I // J. Clin. Rheumatol. 2004. Vol. 10 (6). P. 353–359.
- Singbartl K., Forlow S.B., Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure // FASEB Journal. 2001. Vol. 15 (13). P. 2337–2344.
- Singbartl K., Green S.A., Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure // FASEB Journal. 2000. Vol. 14 (1). P. 48–54.
- Sodhi A., Pai K., Singh R.K. et al. Activation of human NK cells and monocytes with cisplatin in vitro // Int. J. Immunopharm. 1990. Vol. 12 (8). P. 893–898.
- Sutton T.A., Mang H.E., Campos S.B. et al. Injury of the renal microvascular endothelium alters barrier function after ischemia // Am. J. Physiol. Renal Physiol. 2003. Vol. 285. P. 191–198.
- Thadhani R., Pascual M., Bonventre JV. Acute renal failure // N. Engl. J. Med. 1996. Vol. 334. P. 1448–1460.
- Thurman J.M., Lenderink A.M., Royer P.A. et al. C3a is required for the production of CXC chemokines by tubular epithelial cells after renal ishemia/reperfusion // Journal of Immunology. 2007. Vol. 178 (3). P. 1819–1828.
- Thurman J.M., Ljubanovic D., Edelstein C.L. et al. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice // J. Immunol. 2003. Vol. 170 (3). P. 1517–1523.
- Thurman J.M., Ljubanovic D., Royer P.A. et al. Altered renal tubular expression of the complement inhibitor crry permits complement activation after ischemia/reperfusion // J. Clin. Invest. 2006. Vol. 116. P. 357–368.
- Thurman J.M., Lucia M.S., Ljubanovic D., Holers V.M. Acute tubular necrosis is characterized by activation of the alternative pathway of complement // Kidney Int. 2005. Vol. 67 (2). P. 524–530.
- Thurman J.M., Royer P.A., Ljubanovic D. et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury // J. Am. Soc. Nephr. 2006. Vol. 17 (3). P. 707–715.
- Uchino S., Kellum J.A., Bellomo R. et al. For the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators: Acute renal failure in critically ill patients: A multinational, multicenter study // J. A. M. A. 2005. Vol. 294. P. 813–818.
- Umehara H., Goda S., Imai T. et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1 // Immunology and Cell Biology. 2001. Vol. 79 (3). P. 298–302.
- Waikar S.S., Bonventre J.V. Biomarkers for the diagnosis of acute kidney injury // Curr. Opin. Nephrol. Hypertens. 2007. Vol. 16. P. 557–564.
- Walzer T., Dalod M., Robbins S.H. et al. Natural-killer cells and dendritic cells: “l’union fait la force” // Blood. 2005. Vol. 106 (7). P. 2252–2258.
- Wang W., Faubel S., Ljubanovic D. et al. Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice // Am. J. Physiol. 2005. Vol. 288 (5) P. 997–1004.
- Wang W., Jittikanont S., Falk S.A. et al. Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure // Am. J. Physiol. 2003. Vol. 284 (3). P. 532–537.
- Wu H., Chen G., Wyburn K.R. et al. TLR4 activation mediates kidney ischemia/reperfusion injury // J. Clin. Invest. 2007. Vol. 117. P. 2847–2859.
- Wu H., Craft M.L., Wang P. et al. IL-18 contributes to renal damage after ischemia-reperfusion // J. Am. Soc. Nephr. 2008. Vol. 19 (12). P. 2331–2341.
- Yasuda H., Leelahavanichkul A., Tsunoda S. et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury // Am. J. Physiol. 2008. Vol. 294 (5). P. 1050–1058.
- Ysebaert D.K., De Greef K.E., Vercauteren S.R. et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury // Nephr. Dial. Transpl. 2000. Vol. 15 (10). P. 1562–1574.
- Ysebaert D.K. T cells as mediators in renal ischemia/reperfusion injury // Kidney Int. 2004. Vol. 66 (2). P. 491–496.
- Zaldivar F. Jr., Nugent D.J., Imfeld K. et al. Identification of a novel regulatory element in the human interleukin 1 alpha (IL-1?) gene promoter // Cytokine. 2002. Vol. 20 (3). P. 130–135.
- Zhang Z.-X, Wang S., Huang X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury // J. Immunol. 2008. Vol. 181 (11). P. 7489–7498.
- Zhou H., Hewitt S.M., Yuen P.S. et al. Acute kidney injury biomarkers – needs, present status, and future promise // Nephrol. S. A. P. 2006. Vol. 5. P. 63–71.
Другие статьи по теме