<< Вернуться к списку статей журнала
Том 17 №2 2015 год - Нефрология и диализ
Митохондриально-направленные подходы в терапии острого повреждения почек
Янкаускас С.С.
Плотников Е.Ю.
Зорова Л.Д.
Попков В.А.
Певзнер И.Б.
Бабенко В.А.
Адрианова Н.В.
Зоров С.Д.
Силачёв Д.Н.
Зоров Д.Б.
Аннотация: Экспериментальные работы последних десяти лет накопили достаточное количество фактов, убедительно показывающих, что митохондрии играют ключевую роль в развитии острого повреждения почек (ОПП) при воздействии различных повреждающих агентов, включающих ишемию/реперфузию, миоглобинурию, эндотоксемический шок и нефротоксичные препараты. Во всех перечисленных случаях происходит нарушение нормального функционирования митохондрий почки, одним из основных последствий которого становится чрезмерная продукция активных форм кислорода (АФК), в основном производящихся в дыхательной цепи митохондрий. Развивающийся окислительный стресс нарушает или изменяет целый ряд внутриклеточных процессов, в результате чего падает эффективность работы канальцевого эпителия и изменяется реактивность почечных сосудов. При большей выраженности митохондриальной дисфункции развивается гибель клеток, ведущая к уменьшению количества действующих нефронов. В данном обзоре рассматриваются новые подходы к лечению ОПП, направленные на митохондриальные процессы. Первый из них заключается в использовании нового типа антиоксидантов, сконструированных таким образом, чтобы избирательно накапливаться в митохондриях клеток. Экспериментальные данные показывают, что достижение высоких концентраций антиоксидантных соединений в этих органеллах позволяет остановить цепочку деструктивных событий при моделировании ОПП и, как следствие, сохранить функцию почки. Вторая стратегия - умеренное разобщение дыхания митохондрий и окислительного фосфорилирования - изменяет работу дыхательной цепи таким образом, что уменьшает её способность к образованию кислородных радикалов. Третий подход связан не с уменьшением количества АФК, а с активацией эндогенных механизмов толерантности к окислительному стрессу путём «тренировки» органа короткими периодами ишемии. Пульсы АФК, образуемые дыхательной цепью митохондрии в эти периоды, активируют сигнальные пути, которые делают органеллу более устойчивой к условиям, в которых генерируется много АФК. Целый ряд фармакологических агентов способен активировать данные сигнальные пути и уменьшать тяжесть ОПП в экспериментах на животных.
Для цитирования: Янкаускас С.С., Плотников Е.Ю., Зорова Л.Д., Попков В.А., Певзнер И.Б., Бабенко В.А., Адрианова Н.В., Зоров С.Д., Силачёв Д.Н., Зоров Д.Б. Митохондриально-направленные подходы в терапии острого повреждения почек. Нефрология и диализ. 2015. 17(2):143-155. doi:
Весь текст
Ключевые слова: острое повреждение почек,
нефротоксичность,
митохондрия,
окислительный стресс,
прекондиционирование,
антиоксиданты,
cute kidney injury,
nephrotoxicity,
mitochondria,
oxidative stress,
preconditioning,
antioxidantsСписок литературы:- Антоненко Ю.Н., Аветисян А.В., Бакеева Л.Е., и др. Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. Катионные производные пластохинона: синтез и исследование in vitro. Биохимия. 2008. 73(12):1589-1606.
- Зоров Д.Б., Плотников Е.Ю., Янкаускас С.С., и др. Феноптозная проблема: отчего гибнет орагнизм? Уроки по почечной недостаточности. Биохимия. 2012. 77(7):893-906.
- Мухин Н.А. Нефрология. Национальное руководство. Москва: ГЭОТАР-Медиа, 2009. 720 с.
- Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология: учебное пособие для студентов медицинских вузов. Москва: ООО «Медицинское информационное агентство», 2007. 536 с.
- Плотников Е.Ю., Силачев Д.Н., Зорова Л.Д., и др. Соли лития - простые, но магические Биохимия. 2014. 79(8):932-943.
- Плотников Е.Ю., Силачев Д.Н., Чупыркина А.А., и др. Новое поколение Скулачев-ионов, обладающих выраженным нефро- и нейропротекторным действием Биохимия. 2010. 75(2):177-184.
- Плотников Е.Ю., Силачев Д.Н., Янкаускас С.С., и др. Частичное разобщение дыхания и фософорилирования как один из путей реализации нефро- и нейропротекторного действия проникающих катионов семейства SkQ Биохимия. 2012. 77(9):1240-1250.
- Повалий Т.М. Ультраструктурные изменения в нефроне во время ишемии и «выживание» органа. Бюлл. Эксп. Биол. Мед. 1975. 79(3):118-121.
- Скулачев В.П. Попытка биохимиков атаковать проблему старения: «мегапроект» по проникающим катионам. Первые итоги и перспективы. Биохимия. 2007. 72(12):1572-1586.
- Скулачев В.П., Богачев А.В., Каспаринский Ф.О. Мембранная биоэнергетика. Москва: Издательство Московского Университета, 2010. 367 с.
- Янкаускас С.С., Плотников Е.Ю., Моросанова М.А., и др. Митохондриально-адресованный антиоксидант SkQR1 предотвращает вызванную гентамицином почечную недостаточность и потерю слуха Биохимия. 2012. 77(6):818-823.
- Ярилин А.А. Основы иммунологии. Москва: Медицина, 1999. 608 с.
- Ярмагомедов А.А. Острая почечная недостаточность // Диализный альмонах. Санкт-Петербург: Элби-СПб, 2005. с. 107-135.
- Alejandro V.S., Nelson W.J., Huie P., et al. Postischemic injury, delayed function and Na+/K(+)-ATPase distribution in the transplanted kidney. Kidney Int. 1995. 48(4):1308-1315.
- Altun B., Yilmaz R., Aki T., et al. Use of mesenchymal stem cells and darbepoetin improve ischemia-induced acute kidney injury outcomes. Am. J. Nephrol. 2012. 35(6):531-539.
- Aoshiba K., Onizawa S., Tsuji T., et al. Therapeutic effects of erythropoietin in murine models of endotoxin shock. Crit. Care Med. 2009. 37(3):889-898.
- Arduini A., Mezzetti A., Porreca E., et al. Effect of ischemia and reperfusion on antioxidant enzymes and mitochondrial inner membrane proteins in perfused rat heart. Biochim. Biophys. Acta. 1988. 970(2):113-121.
- Bao H., Ge Y., Wang Z., et al. Delayed Administration of a Single Dose of Lithium Promotes Recovery from AKI. J. Am. Soc. Nephrol. 2014. 25(3):488-500.
- Bernardi P., Krauskopf A., Basso E., et al. The mitochondrial permeability transition from in vitro artifact to disease target FEBS J. 2006. 273(10):2077-2099.
- Bi B., Guo J., Marlier A., et al. Erythropoietin expands a stromal cell population that can mediate renoprotection. Am. J. Physiol. Renal Physiol. 2008. 295(4):F1017-22.
- Birk a. V., Liu S., Soong Y., et al. The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin J. Am. Soc. Nephrol. 2013. 24(8):1250-1261.
- Candilio L., Malik A., Ariti C., et al. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart. 2015. 101(3):185-192.
- Cao C.C., Ding X.Q., Ou Z. Lou, et al. In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int. 2004. 65(3):834-845.
- Cassina A.M., Hodara R., Souza J.M., et al. Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 2000. 275(28):21409-21415.
- Choi Y.S., Shim J.K., Kim J.C., et al. Effect of remote ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J. Thorac. Cardiovasc. Surg. 2011. 142(1):148-154.
- Coronel I., Arellano-Mendoza M.G., Valle-Mondragon L. del, et al. L-arginine and antioxidant diet supplementation partially restores nitric oxide-dependent regulation of phenylephrine renal vasoconstriction in diabetics rats. J. Ren. Nutr. 2010. 20(3):158-168.
- Cuzzocrea S., Mazzon E., Dugo L., et al. A role for superoxide in gentamicin-mediated nephropathy in rats Eur. J. Pharmacol. 2002. 450(1):67-76.
- Davies K.J., Delsignore M.E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987. 262(20):9908-9913.
- Devalaraja-Narashimha K., Diener A.M., Padanilam B.J. Cyclophilin D gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Renal Physiol. 2009. 297(3):F749-F759.
- Dikalov S. Cross talk between mitochondria and NADPH oxidases Free Radic. Biol. Med. 2011. 51(7):1289-1301.
- Diwan V., Jaggi A.S., Singh M., et al. Possible involvement of erythropoietin in remote renal preconditioning-induced cardioprotection in rats. J. Cardiovasc. Pharmacol. 2008. 51(2):126-130.
- Duan S.-B., Yang S.-K., Zhou Q.-Y., et al. Mitochondria-targeted peptides prevent on contrast-induced acute kidney injury in the rats with hypercholesterolemia. Ren. Fail. 2013. 35(8):1124-1129.
- Efrati S., Berman S., Ilgiyeav I., et al. Differential effects of N-acetylcysteine, theophylline or bicarbonate on contrast-induced rat renal vasoconstriction. Am. J. Nephrol. 2009. 29(3):181-191.
- Eliopoulos N., Zhao J., Forner K., et al. Erythropoietin Gene-enhanced Marrow Mesenchymal Stromal Cells Decrease Cisplatin-induced Kidney Injury and Improve Survival of Allogeneic Mice Mol. Ther. 2011. 19(11):2072-2083.
- Endre Z.H., Walker R.J., Pickering J.W., et al. Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int. 2010. 77(11):1020-1030.
- Er F., Nia A.M., Dopp H., et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012. 126(3):296-303.
- Eren Z., Coban J., Ekinci I.D., et al. Evaluation of the effects of a high dose of erythropoietin-beta on early endotoxemia using a rat model. Adv. Clin. Exp. Med. 2012. 21(3):321-329.
- Eshraghi-Jazi F., Nematbakhsh M., Pezeshki Z., et al. Sex differences in protective effect of recombinant human erythropoietin against cisplatin-induced nephrotoxicity in rats. Iran. J. Kidney Dis. 2013. 7(5):383-389.
- Garay M., Gaarde W., Monia B.P., et al. Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochem. Pharmacol. 2000. 59(9):1033-1043.
- Glaumann B., Glaumann H., Berezesky I.K., et al. Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (P1 and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch. B. Cell Pathol. 1975. 19(4):281-302.
- Glaumann B., Trump B.F. Studies on the pathogenesis of ischemic cell injury. III. Morphological changes of the proximal pars recta tubules (P3) of the rat kidney made ischemic in vivo. Virchows Arch. B. Cell Pathol. 1975. 19(4):303-323.
- Gogvadze V., Orrenius S., Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis Biochim. Biophys. Acta - Bioenerg. 2006. 1757(5-6):639-647.
- Golenhofen N., Doctor R.B., Bacallao R., et al. Actin and villin compartmentation during ATP depletion and recovery in renal cultured cells. Kidney Int. 1995. 48(6):1837-1845.
- Greef K.E. De, Ysebaert D.K., Dauwe S., et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia Kidney Int. 2001. 60(4):1415-1427.
- Ham A., Kim M., Kim J.Y., et al. Critical role of interleukin-11 in isoflurane-mediated protection against ischemic acute kidney injury in mice. Anesthesiology. 2013. 119(6):1389-1401.
- Igarashi G., Iino K., Watanabe H., et al. Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ. J. 2013. 77(12):3037-3044.
- Ishibashi N., Weisbrot-Lefkowitz M., Reuhl K., et al. Modulation of chemokine expression during ischemia/reperfusion in transgenic mice overproducing human glutathione peroxidases. J. Immunol. 1999. 163(10):5666-5677.
- Jassem W., Ciarimboli C., Cerioni P.N., et al. Glyoxalase II and glutathione levels in rat liver mitochondria during cold storage in Euro-Collins and University of Wisconsin solutions. Transplantation. 1996. 61(9):1416-1420.
- Jia P., Teng J., Zou J., et al. Intermittent exposure to xenon protects against gentamicin-induced nephrotoxicity. PLoS One. 2013. 8(5):e64329.
- Jiang J., Kurnikov I., Belikova N. a, et al. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides. J. Pharmacol. Exp. Ther. 2007. 320(3):1050-1060.
- Jones D.B. Ultrastructure of human acute renal failure. Lab. Invest. 1982. 46(3):254-264.
- Joza N., Pospisilik J.A., Hangen E., et al. AIF: Not just an apoptosis-inducing factor Ann. N. Y. Acad. Sci. 2009. 11712-11.
- Juhaszova M., Zorov D.B., Kim S.-H., et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004. 113(11):1535-1549.
- Juhaszova M., Zorov D.B., Yaniv Y., et al. Role of glycogen synthase kinase-3β in cardioprotection Circ. Res. 2009. 104(11):1240-1252.
- Kellerman P.S., Clark R. A, Hoilien C. A, et al. Role of microfilaments in maintenance of proximal tubule structural and functional integrity. Am. J. Physiol. 1990. 259(2 Pt 2):F279-F285.
- Khajuria A., Tay C., Shi J., et al. Anesthetics attenuate ischemia-reperfusion induced renal injury: Effects and mechanisms Acta Anaesthesiol. Taiwanica. 2014. 52(4):176-184.
- Kim J., Jang H.-S., Park K.M. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 2010. 298(1):F158-F166.
- Kim M., Ham A., Kim J.Y., et al. The volatile anesthetic isoflurane induces ecto-5’-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury. Kidney Int. 2013. 84(1):90-103.
- Kong D., Zhuo L., Gao C., et al. Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. J. Nephrol. 2013. 26(1):219-227.
- Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria FEBS Lett. 1997. 416(1):15-18.
- Koyner J.L., Sher Ali R., Murray P.T. Antioxidants: Do they have a place in the prevention or therapy of acute kidney injury? Nephron - Exp. Nephrol. 2008. 109(4):109-118.
- Kupatt C., Weber C., Wolf D.A., et al. Nitric oxide attenuates reoxygenation-induced ICAM-1 expression in coronary microvascular endothelium: role of NFkappaB. J. Mol. Cell. Cardiol. 1997. 29(10):2599-2609.
- Kwon O., Corrigan G., Myers B.D., et al. Sodium reabsorption and distribution of Na+/K+-ATPase during postischemic injury to the renal allograft Kidney Int. 1999. 55(3):963-975.
- Laderoute K.R., Webster K. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ. Res. 1997. 80(3):336-344.
- Lameire N. The pathophysiology of acute renal failure Crit. Care Clin. 2005. 21(2):197-210.
- Lee H.T., Emala C.W. Protective effects of renal ischemic preconditioning and adenosine pretreatment : role of A 1 and A 3 receptors Am. J. Physiol. Ren. Physiol. 2000. 278(3):F380-F387.
- Lemoine S., Pillot B., Rognant N., et al. Postconditioning With Cyclosporine A Reduces Early Renal Dysfunction by Inhibiting Mitochondrial Permeability Transition. Transplantation. 2015. 99(4):717-723.
- Li C., Jackson R.M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 2002. 282(2):C227-C241.
- Liu S., Soong Y., Seshan S. V, et al. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol. Renal Physiol. 2014. 306(9):F970-F980.
- Lochhead K.M., Kharasch E.D., Zager R.A. Anesthetic effects on the glycerol model of rhabdomyolysis-induced acute renal failure in rats. J. Am. Soc. Nephrol. 1998. 9(2):305-309.
- Lowes D. a., Webster N.R., Murphy M.P., et al. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis Br. J. Anaesth. 2013. 110(3):472-480.
- Ma D., Lim T., Xu J., et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J. Am. Soc. Nephrol. 2009. 20(4):713-720.
- Meerwein C., Korom S., Arni S., et al. The effect of low-dose Continuous Erythropoietin receptor activator in an experimental model of acute Cyclosporine A induced renal injury. Eur. J. Pharmacol. 2011. 671(1-3):113-119.
- Mitchell T., Rotaru D., Saba H., et al. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. J. Pharmacol. Exp. Ther. 2011. 336(3):682-692.
- Mitra A., Bansal S., Wang W., et al. Erythropoietin ameliorates renal dysfunction during endotoxaemia. Nephrol. Dial. Transplant. 2007. 22(8):2349-2353.
- Miyazawa S., Watanabe H., Miyaji C., et al. Leukocyte accumulation and changes in extra-renal organs during renal ischemia reperfusion in mice. J. Lab. Clin. Med. 2002. 139(5):269-278.
- Mizuguchi Y., Chen J., Seshan S. V, et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 2008. 295(5):F1545-53.
- Molitoris B.A., Chan L.K., Shapiro J.I., et al. Loss of epithelial polarity: a novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury. J. Membr. Biol. 1989. 107(2):119-127.
- Molitoris B.A., Falk S.A., Dahl R.H. Ischemia-induced loss of epithelial polarity. Role of the tight junction. J. Clin. Invest. 1989. 84(4):1334-1339.
- Molitoris B.A., Hoilien C.A., Dahl R., et al. Characterization of ischemia-induced loss of epithelial polarity. J. Membr. Biol. 1988. 106(3):233-242.
- Morales A.I., Detaille D., Prieto M., et al. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int. 2010. 77(10):861-869.
- Mukhopadhyay P., Horváth B., Zsengellér Z., et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy Free Radic. Biol. Med. 2012. 52(2):497-506.
- Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009. 417(1):1-13.
- Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986. 74(5):1124-1136.
- Nakagawa T., Shimizu S., Watanabe T., et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005. 434(7033):652-658.
- Nemoto T., Yokota N., Keane W.F., et al. Recombinant erythropoietin rapidly treats anemia in ischemic acute renal failure Kidney Int. 2001. 59(1):246-251.
- Oh S.W., Chin H.J., Chae D.W., et al. Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting. J. Korean Med. Sci. 2012. 27(5):506-511.
- Olof P., Hellberg A., Kallskog O., et al. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int. 1991. 40(4):625-631.
- Park K.M., Chen A., Bonventre J. V. Prevention of Kidney Ischemia/Reperfusion-induced Functional Injury and JNK, p38, and MAPK Kinase Activation by Remote Ischemic Pretreatment J. Biol. Chem. 2001. 276(15):11870-11876.
- Patil N.K., Parajuli N., MacMillan-Crow L.A., et al. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am. J. Physiol. Renal Physiol. 2014. 306(7):F734-743.
- Pedersen K.R., Ravn H.B., Povlsen J.V., et al. Failure of remote ischemic preconditioning to reduce the risk of postoperative acute kidney injury in children undergoing operation for complex congenital heart disease: a randomized single-center study. J. Thorac. Cardiovasc. Surg. 2012. 143(3):576-583.
- Plotnikov E.Y., Chupyrkina A. A., Jankauskas S.S., et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion Biochim. Biophys. Acta - Mol. Basis Dis. 2011. 1812(1):77-86.
- Plotnikov E.Y., Chupyrkina A. A., Pevzner I.B., et al. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria Biochim. Biophys. Acta - Mol. Basis Dis. 2009. 1792(8):796-803.
- Plotnikov E.Y., Grebenchikov O. A., Babenko V. A., et al. Nephroprotective effect of GSK-3β inhibition by lithium ions and δ-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity Toxicol. Lett. 2013. 220(3):303-308.
- Plotnikov E.Y., Kazachenko a V, Vyssokikh M.Y., et al. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int. 2007. 72(12):1493-1502.
- Plotnikov E.Y., Morosanova M. A, Pevzner I.B., et al. Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc. Natl. Acad. Sci. U. S. A. 2013. 110(33):E3100-8.
- Price V.R. ATP Depletion Of Tubular Cells Causes Dissociation of the Zonula Adherens and Nuclear Translocation of beta-Catenin and LEF-1 J. Am. Soc. Nephrol. 2002. 13(5):1152-1161.
- Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 1995. 268(5 Pt 1):L699-722.
- Qiao X., Chen X., Wu D., et al. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury. J. Gerontol. A. Biol. Sci. Med. Sci. 2005. 60(7):830-839.
- Raman N., Atkinson S.J. Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery. Am. J. Physiol. 1999. 276(6 Pt 1):C1312-C1324.
- Ramsey H., Wu M.X. Mitochondrial anti-oxidant protects IEX-1 deficient mice from organ damage during endotoxemia Int. Immunopharmacol. 2014. 23(2):658-663.
- Ravagnan L., Roumier T., Kroemer G. Mitochondria, the killer organelles and their weapons J. Cell. Physiol. 2002. 192(2):131-137.
- Rjiba-Touati K., Boussema I.A., Belarbia A., et al. Protective effect of recombinant human erythropoietin against cisplatin-induced oxidative stress and nephrotoxicity in rat kidney. Int. J. Toxicol. 2011. 30(5):510-517.
- Rouslin W. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am. J. Physiol. 1983. 244(6):H743-H748.
- Sahu B.D., Kuncha M., Putcha U.K., et al. Effect of metformin against cisplatin induced acute renal injury in rats: A biochemical and histoarchitectural evaluation Exp. Toxicol. Pathol. 2013. 65(6):933-940.
- Salahudeen A.K., Haider N., Jenkins J., et al. Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 2008. 294(6):F1354-F1365.
- Scaduto R.C.J., Gattone V.H. 2nd, Grotyohann L.W., et al. Effect of an altered glutathione content on renal ischemic injury. Am. J. Physiol. 1988. 255(5 Pt 2):F911-F921.
- Schrier R., Wang W. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy J. Clin. Invest. 2004. 114(1):5-14.
- Sedaghat Z., Kadkhodaee M., Seifi B., et al. Remote preconditioning reduces oxidative stress, downregulates cyclo-oxygenase-2 expression and attenuates ischaemia-reperfusion-induced acute kidney injury. Clin. Exp. Pharmacol. Physiol. 2013. 40(2):97-103.
- Seo-Mayer P.W., Thulin G., Zhang L., et al. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia AJP Ren. Physiol. 2011. 301(6):F1346-F1357.
- Sharpe M.A., Cooper C.E. Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J. Biol. Chem. 1998. 273(47):30961-30972.
- Sharples E.J., Patel N., Brown P., et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J. Am. Soc. Nephrol. 2004. 15(8):2115-2124.
- Shlafer M., Myers C.L., Adkins S. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dismutase following global ischemia. J. Mol. Cell. Cardiol. 1987. 19(12):1195-1206.
- Silachev D.N., Isaev N.K., Pevzner I.B., et al. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One. 2012. 7(12):e51553.
- Singh D., Chander V., Chopra K. Cyclosporine protects against ischemia/reperfusion injury in rat kidneys Toxicology. 2005. 207(3):339-347.
- Singh P., Okusa M.D. The role of tubuloglomerular feedback in the pathogenesis of acute kidney injury. Contrib. Nephrol. 2011. 174(1):12-21.
- Song Y.R., Lee T., You S.J., et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am. J. Nephrol. 2009. 30(3):253-260.
- Souza A.C.C.P. de, Volpini R.A., Shimizu M.H., et al. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting NF-kappaB and upregulating endothelial nitric oxide synthase. Am. J. Physiol. Renal Physiol. 2012. 302(8):F1045-54.
- Sterenborg T.B., Menting T.P., Waal Y. de, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: study protocol for a randomized controlled trial. Trials. 2014. 15(1):119.
- Stoyanoff T.R., Todaro J.S., Aguirre M. V, et al. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: involvement of mitochondria-regulated apoptosis. Toxicology. 2014. 318(1):13-21.
- St-Pierre J., Brand M.D., Boutilier R.G. Mitochondria as ATP consumers: cellular treason in anoxia. Proc. Natl. Acad. Sci. U. S. A. 2000. 97(15):8670-8674.
- Su M.W., Chang S.S., Chen C.H., et al. Preconditioning renoprotective effect of isoflurane in a rat model of virtual renal transplant J. Surg. Res. 2014. 189(1):135-142.
- Szeto H.H. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J. 2006. 8(3):E521-E531.
- Szeto H.H., Liu S., Soong Y., et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 2011. 22(6):1041-1052.
- Talab S.S., Elmi A., Emami H., et al. Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: Role of nitric oxide and cyclooxygenase systems Eur. J. Pharmacol. 2012. 681(1-3):94-99.
- Thadhani R., Pascual M., Bonventre J. V. Acute renal failure. N. Engl. J. Med. 1996. 334(22):1448-1460.
- Thomas C.C., Bakris G. Metformin nephrotoxicity insights: Will they change clinical management? J. Diabetes. 2014. 6(2):111-112.
- Thomsen K., Olesen O. V. Lithium-induced acute renal failure in the rat. Toxicol. Appl. Pharmacol. 1978. 45(1):155-161.
- Vecchio S., Giampreti A., Petrolini V.M., et al. Metformin accumulation: lactic acidosis and high plasmatic metformin levels in a retrospective case series of 66 patients on chronic therapy. Clin. Toxicol. (Phila). 2014. 52(2):129-135.
- Venugopal V., Laing C.M., Ludman A., et al. Effect of remote ischemic preconditioning on acute kidney injury in nondiabetic patients undergoing coronary artery bypass graft surgery: a secondary analysis of 2 small randomized trials. Am. J. Kidney Dis. 2010. 56(6):1043-1049.
- Vesey D. a., Cheung C., Pat B., et al. Erythropoietin protects against ischaemic acute renal injury Nephrol. Dial. Transplant. 2004. 19(2):348-355.
- Vogt M.T., Farber E. On the molecular pathology of ischemic renal cell death. Reversible and irreversible cellular and mitochondrial metabolic alterations. Am. J. Pathol. 1968. 53(1):1-26.
- Walker P.D., Shah S. V. Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am. J. Physiol. 1987. 253(4 Pt 1):C495-C499.
- Walker P.D., Shah S. V. Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J. Clin. Invest. 1988. 81(2):334-341.
- Wang W., Tang T., Zhang P., et al. Postconditioning Attenuates Renal Ischemia-Reperfusion Injury by Preventing DAF Down-Regulation J. Urol. 2010. 183(6):2424-2431.
- Wang Y., Huang W.C., Wang C.Y., et al. Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis Br. J. Pharmacol. 2009. 157(6):1004-1013.
- Wangsiripaisan a., Gengaro P.E., Edelstein C.L., et al. Role of polymeric Tamm-Horsfall protein in cast formation: Oligosaccharide and tubular fluid ions Kidney Int. 2001. 59(3):932-940.
- Weng X., Shen H., Kuang Y., et al. Ischemic postconditioning inhibits the renal fibrosis induced by ischemia-reperfusion injury in rats. Urology. 2012. 80(2):484.e1-7.
- Wilson D.R., Arnold P.E., Burke T.J., et al. Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int. 1984. 25(3):519-526.
- Wipf P., Xiao J., Jiang J., et al. Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J. Am. Chem. Soc. 2005. 127(36):12460-12461.
- Wu J., Feng X., Huang H., et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J. Surg. Res. 2014. 188(1):303-308.
- Yang C.W., Li C., Jung J.Y., et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J. 2003. 17(12):1754-1755.
- Yang F.-L., Subeq Y.-M., Chiu Y.-H., et al. Recombinant human erythropoietin reduces rhabdomyolysis-induced acute renal failure in rats. Injury. 2012. 43(3):367-373.
- Young P.J., Dalley P., Garden A., et al. A pilot study investigating the effects of remote ischemic preconditioning in high-risk cardiac surgery using a randomised controlled double-blind protocol. Basic Res. Cardiol. 2012. 107(3):256.
- Ysebaert D.K., Greef K.E. De, Vercauteren S.R., et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol. Dial. Transplant. 2000. 15(10):1562-1574.
- Zhang Y.-J., Zhang A.-Q., Zhao X.-X., et al. Nicorandil protects against ischaemia-reperfusion injury in newborn rat kidney. Pharmacology. 2013. 92(5-6):245-256.
- Zhao H., Yoshida A., Xiao W., et al. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013. 27(10):4076-4088.
- Zimmerman R.F., Ezeanuna P.U., Kane J.C., et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 2011. 80(8):861-867.
- Zorov D.B., Filburn C.R., Klotz L.O., et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 2000. 192(7):1001-1014.
- Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014. 94(3):909-950.
Другие статьи по теме