Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 16 №3 2014 год - Нефрология и диализ

Склеростин в контексте хронической болезни почек (Обзор литературы)


Гуревич Е.А.

Аннотация: Расстройство костного метаболизма и сосудистая кальцификация в значительной степени способствуют развитию сердечно-сосудистых осложнений у пациентов со сниженной функцией почек и являются предикторами худшей выживаемости этой группы больных. В последнее время все больше внимания уделяется поиску и исследованию маркеров костного повреждения, которые ассоциируются с развитием ряда системных осложнений у больных с хронической болезнью почек (ХБП), включая пациентов, находящихся на заместительной почечной терапии. Wnt-сигнальный путь состоит из ряда сложных белков, постоянно взаимодействующих между собой и определяющих не только нормальный эмбриогенез, но и метаболизм костной ткани. Склеростин, ингибируя Wnt-сигнальный путь, нарушает образование костной ткани путем подавления пролиферации и дифференциации остеобластов. У пациентов с нарушением функции почек уровень склеростина в крови повышен за счет усиленного образования. Однако до сих пор неизвестно, является ли склеростин предиктором неблагоприятного прогноза у больных с ХБП, либо он выступает в роли своеобразного защитника сосудистой стенки от кальцификации, тем самым обеспечивая лучшую выживаемость как сосудистого доступа, так и пациентов в целом. В обзоре представлены современные данные о роли склеростина в метаболизме костной ткани, его участии в процессах ремоделирования кости у больных с почечной недостаточностью, а также о потенциальных терапевтических стратегиях, направленных на изменение концентрации этого белка.

Для цитирования: Гуревич Е.А. Склеростин в контексте хронической болезни почек (Обзор литературы). Нефрология и диализ. 2014. 16(3):339-349. doi:


Весь текст



Ключевые слова: склеростин, Wnt-сигнальный путь, хроническая болезнь почек, sclerostin, Wnt-signaling pathway, chronic kidney disease

Список литературы:
  1. Amrein K., Amrein S., Drexler C. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults // J. Clin. Endocrinol. Metab. 2012. Vol. 97(1). P. 148-154.
  2. Arasu A., Cawthon P.M., Lui L.Y. Serum sclerostin and risk of hip fracture in older Caucasian women // J. Clin. Endocrinol. Metab. 2012. Vol. 97(6). P. 2027-2032.
  3. Ardawi M.S., Rouzi A.A., Al-Sibiani S.A. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study // J. Bone Miner. Res. 2012. Vol. 27(12). P. 2592-2602.
  4. Ardawi M.S., Al-Sibiany A.M., Bakhsh T.M. Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study // Osteoporos Int. 2012. Vol. 23(6). P. 1789-1797.
  5. Balcı M., Kırkpantur A., Turkvatan A. Sclerostin as a new key player in arteriovenous fistula calcification // Herz. 2013.
  6. Balemans W., Cleiren E., Siebers U. A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the SOST gene // Bone. 2005. Vol. 36(6). P. 943-947.
  7. Balemans W., Ebeling M., Patel N. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) // Hum. Mol. Genet. 2001. Vol. 10(5). P. 537-543.
  8. Balemans W., Patel N., Ebeling M. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease // J. Med. Genet. 2002. Vol. 39(2). P. 91-97.
  9. Barreto F.C., Barreto D.V., Liabeuf S. Effects of uremic toxins on vascular and bone remodeling // Semin. Dial. 2009. Vol. 22(4). P. 433-437.
  10. Barreto F.C., Barreto D.V., Moyses R.M. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem // Kidney Int. 2006. Vol. 69. P. 1852-1857.
  11. Bellido T., Ali A.A., Gubrij I. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis // Endocrinology. 2005. Vol. 146(11). P. 4577-4583.
  12. Berendsen A.D., Fisher L.W., Kilts TM. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan // Proc. Natl. Acad. Sci. 2011. Vol. 108. P. 17022-17027.
  13. Bhattoa H.P., Wamwaki J., Kalina E. Serum sclerostin levels in healthy men over 50 years of age // J. Bone Miner. Metab. 2013. Vol. 31(5). P. 579-584.
  14. Brandenburg V.M., Kramann R., Koos R. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC // Nephrol. 2013. Vol. 14. P. 219.
  15. Brunkow M.E., Gardner J.C., Van Ness J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein // Am. J. Hum. Genet. 2001. Vol. 68(3). P. 577-589.
  16. Bu G., Lu W., Liu C.C. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases // Int. J. Cancer. 2008. Vol. 123(5). P. 1034-1042.
  17. Cejka D., Jäger-Lansky A., Kieweg H. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients // Nephrol. Dial. Transplant. 2012. Vol. 27(1). P. 226-230.
  18. Cejka D., Herberth J., Branscum A.J. Sclerostin and Dickkopf-1 in renal osteodystrophy // Clin. J. Am. Soc. Nephrol. 2011. Vol. 6(4). P. 877-882.
  19. Cejka D., Marculescu R., Kozakowski N. Renal elimination of sclerostin increases with declining kidney function // J. Clin. Endocrinol. Metab. 2014. Vol. 99(1). P. 248-255.
  20. Claes K.J., Viaene L., Heye S. Sclerostin: Another vascular calcification inhibitor? // J. Clin. Endocrinol. Metab. 2013. Vol. 98(8). P. 3221-3228.
  21. Craig T.A., Bhattacharya R., Mukhopadhyay D. Sclerostin binds and regulates the activity of cysteine-rich protein 61 // Biochem. Biophys. Res. Commun. 2010. Vol. 392(1). P. 36-40.
  22. Dargent-Molina P., Sabia S., Touvier M. Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study // J. Bone Miner. Res. 2008. Vol. 23(12). P. 1915-1922.
  23. De Oliveira R.B., Graciolli F.G., dos Reis L.M. Disturbances of Wnt/β-catenin pathway and energy metabolism in early CKD: effect of phosphate binders // Nephrol. Dial. Transplant. 2013. Vol. 28(10). P. 2510-2517.
  24. Dooley A.C., Weiss N.S., Kestenbaum B. Increased risk of hip fracture among men with CKD // Am. J. Kidney Dis. 2008. Vol. 51(1). P. 38-44.
  25. Drake M.T., Srinivasan B., Mödder UI. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women // J. Clin. Endocrinol. Metab. 2010. Vol. 95(11). P. 5056-5062.
  26. Drüeke T., Lieberherr M., Cournot G. Pathophysiology of aluminum-induced bone disease // Contrib. Nephrol. 1988. Vol. 64. P. 109-112.
  27. Ellies D.L., Viviano B., McCarthy J. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity // J. Bone Miner. Res. 2006. Vol. 21 (11). P. 1738-1749.
  28. Fang Y., Ginsberg C., Sugatani T. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification // Kidney Int. 2014. Vol. 85(1). P. 142-150.
  29. Ferreira A., Saraiva M., Behets G. Evaluation of bone remodeling in hemodialysis patients: serum biochemistry, circulating cytokines and bone histomorphometry // J. Nephrol. 2009. Vol. 22(6). P. 783-793.
  30. Fosmoe R.J., Holm R.S., Hildreth R.C. Van Buchem’s disease (hyperostosis corticalis generalisata familiaris). A case report // Radiology. 1968. Vol. 90 (4). P. 771-774.
  31. Garnero P., Sornay-Rendu E., Munoz F. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study // Osteoporos Int. 2013. Vol. 24(2). P. 489-494.
  32. Gaudio A., Pennisi P., Bratengeier C. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss // J. Clin. Endocrinol. Metab. 2010. Vol. 95(5). P. 2248-2253.
  33. Glass D.A., Bialek P., Ahn J.D. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation // Dev. Cell. 2005. Vol. 8(5). P. 751-764.
  34. Gong Y., Slee R.B., Fukai N. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development // Cell. 2001. Vol. 107(4). P. 513-523.
  35. Hamersma H., Gardner J., Beighton P. The natural history of sclerosteosis // Clin. Genet. 2003. Vol. 63(3). P. 192-197.
  36. Holmen S.L., Zylstra C.R., Mukherjee A. Essential role of beta-catenin in postnatal bone acquisition // J. Biol. Chem. 2005. Vol. 280(22). P. 21162-21168.
  37. Jadoul M., Albert J.M., Akiba T. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study // Kidney Int. 2006. Vol. 70(7). P. 1358-1366.
  38. Jean G., Chazot C. Sclerostin in CKD-MBD: one more paradoxical bone protein? // Nephrol. Dial. Transplant. 2013. Vol. 28(12). P. 2932-2935.
  39. Jean G., Terrat J.C., Vanel T. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients // Nephrol. Dial. Transplant. 2009. Vol. 24(9). P. 2792-2796.
  40. Johnson M.L., Gong G., Kimberling W. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13) // Am. J. Hum. Genet. 1997. Vol. 60(6). P. 1326-1332.
  41. KDIGO C-M, Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone disorders (CKD-MBD) // Kidney Int. 2009. Vol.76. P.1-130.
  42. Keller H., Kneissel M. SOST is a target gene for PTH in bone // Bone. 2005. Vol. 37(2). P. 148-58.
  43. Kim C.A., Honjo R., Bertola D. A known SOST gene mutation causes sclerosteosis in a familial and an isolated case from Brazilian origin // Genet.Test. 2008. Vol. 12(4). P. 475-479.
  44. Kinsella S., Chavrimootoo S., Molloy M.G. Moderate chronic kidney disease in women is associated with fracture occurrence independently of osteoporosis // Nephron. Clin. Pract. 2010. Vol. 116(3). P. 256-262.
  45. Kohn A.D., Moon R.T. Wnt and calcium signaling: beta-catenin-independent pathways // Cell. Calcium. 2005. Vol. 38. P. 439-446
  46. Kovesdy C.P., Ureche V., Lu J.L. Outcome predictability of serum alkaline phosphatase in men with pre-dialysis CKD // Nephrol. Dial. Transplant. 2010. Vol. 25(9). P. 3003-3011.
  47. Krieger N.S., Frick K.K., Bushinsky D.A. Mechanism of acid-induced bone resorption. Curr Opin // Nephrol Hypertens. 2004. Vol. 13(4). P. 423-436.
  48. Krishnan V., Bryant H.U., Macdougald O.A. Regulation of bone mass by Wnt signaling // J. Clin. Invest. 2006. Vol. 116(5). P. 1202-1209.
  49. Kuipers A.L., Zhang Y., Yu S. Relative influence of heritability, environment and genetics on serum sclerostin // Osteoporos Int. 2013.
  50. Lafage-Proust M.H., Combe C., Barthe N. Bone mass and dynamic parathyroid function according to bone histology in nondialyzed uremic patients after long-term protein and phosphorus restriction // J. Clin. Endocrinol. Metab. 1999. Vol. 84(2). P. 512-519.
  51. Li X., Ominsky M.S., Warmington K.S. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis // J. Bone Miner. Res. 2009. Vol. 24(4). P. 578-588.
  52. Li X., Zhang Y., Kang H. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling // J. Biol. Chem. 2005. Vol. 280 (20). P. 19883-19887.
  53. Li X., Warmington K.S., Niu Q.T. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats // J. Bone Miner. Res. 2010. Vol. 25(12). P. 2647-2656.
  54. Little R.D., Carulli J.P., Del Mastro R.G. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait // Am. J. Hum. Genet. 2002. Vol. 70(1). P. 11-19.
  55. Llach F., Massry S.G., Singer F.R. Skeletal resistance to endogenous parathyroid hormone in pateints with early renal failure. A possible cause for secondary hyperparathyroidism // J. lin. Endocrinol. Metab. 1975. Vol. 41(2). P. 339-345.
  56. Malluche H.H., Monier-Faugere M.C. Renal osteodystrophy: what’s in name? Presentation of a clinically useful new model to interpret bone histologic findings // Clin. Nephrol. 2006. Vol. 65. P. 235-242.
  57. Mirza F.S., Padhi I.D., Raisz L.G. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women // J. Clin. Endocrinol. Metab. 2010. Vol. 95(4). P. 1991-1997.
  58. Moe S., Drüeke T., Cunningham J. Kidney Disease: Improving Global Outcomes (KDIGO) // Kidney Int. 2006. Vol. 69(11). P. 1945-1953.
  59. Moester M.J., Papapoulos S.E., Löwik CW. Sclerostin: current knowledge and future perspectives // Calcif. Tissue Int. 2010. Vol. 87(2). P. 99-107.
  60. Morales-Santana S., García-Fontana B., García-Martín A. Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels // Diabetes Care. 2013. Vol. 36(6). P. 1667-1674.
  61. Nusse R., van Ooyen A., Cox D. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15 // Nature. 1984. Vol. 307(5947). P. 131-136.
  62. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila // Nature. 1980. Vol. 287(5785). P. 795-801.
  63. O’Brien C.A., Plotkin L.I., Galli C. Control of bone mass and remodeling by PTH receptor signaling in osteocytes // P.LoS. One. 2008. Vol. 3(8).
  64. Ohyama Y., Nifuji A., Maeda Y. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis // Endocrinology. 2004. Vol. 145(10). P. 4685-4692.
  65. Ominsky M.S., Li C., Li X. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones // J. Bone Miner. Res. 2011. Vol. 26(5). P. 1012-1021.
  66. Ominsky M.S., Vlasseros F., Jolette J. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength // J. Bone Miner. Res. 2010. Vol. 25(5). P. 948-959.
  67. Padhi D., Jang G., Stouch B. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody // J. Bone Miner. Res. 2011. Vol. 26(1). P. 19-26.
  68. Pelletier S., Dubourg L., Carlier M.C. The relation between renal function and serum sclerostin in adult patients with CKD // Clin. J. Am. Soc. Nephrol. 2013. Vol. 8(5). P. 819-823.
  69. Polyzos S.A., Anastasilakis A.D., Bratengeier C. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women--the six-month effect of risedronate and teriparatide // Osteoporos Int. 2012. Vol. 23(3). P. 1171-1176.
  70. Robling A.G., Niziolek P.J., Baldridge L.A. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin // J. Biol. Chem. 2008. Vol. 283(9). P. 5866-5875.
  71. Sabbagh Y., Graciolli F.G., O’Brien S. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy // J. Bone Miner. Res. 2012. Vol. 27(8). P. 1757-1772.
  72. Santos F.R., Moysés R.M., Montenegro F.L. IL-1beta, TNF-alpha, TGF-beta, and bFGF expression in bone biopsies before and after parathyroidectomy // Kidney Int. 2003. Vol. 63(3). P. 899-907.
  73. Schrooten I., Behets G.J., Cabrera W.E. Dose-dependent effects of strontium on bone of chronic renal failure rats // Kidney Int. 2003. Vol. 63(3). P. 927-935.
  74. Sevetson B., Taylor S., Pan Y. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST) // J. Biol. Chem. 2004. Vol. 279(14). P. 13849-13858.
  75. Sigrist M.K., Levin A., Er L. Elevated osteoprotegerin is associated with all-cause mortality in CKD stage 4 and 5 patients in addition to vascular calcification // Nephrol. Dial. Transplant. 2009. Vol. 24(10). P. 3157-3162.
  76. Sprague S.M. The role of the bone biopsy in the diagnosis of renal osteodystrophy // Semin. Dial. 2000. Vol. 13. P. 152-155.
  77. Staehling-Hampton K., Proll S., Paeper BW. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population // Am. J. Med. Genet. 2002. Vol. 110(2). P.144-152.
  78. Stein S.A., Witkop C., Hill S. Sclerosteosis: neurogenetic and pathophysiologic analysis of an American kinship // Neurology. 1983. Vol. 33(3). P. 267-277.
  79. Sutherland M.K., Geoghegan J.C., Yu C. Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts // Bone. 2004. Vol. 35(2). P. 448-454.
  80. Thambiah S., Roplekar R., Manghat P. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness // Calcif. Tissue Int. 2012. Vol. 90(6). P. 473-480.
  81. Terpos E., Fragiadaki K., Konsta M. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis // Clin. Exp. Rheumatol. 2011. Vol. 29(6). P. 921-925.
  82. Tian X., Setterberg R.B., Li X. Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats // Bone. 2010. Vol. 47(3). P. 529-533.
  83. Toussaint N.D., Elder G.J., Kerr P.G. A rational guide to reducing fracture risk in dialysis patients // Semin. Dial. 2010. Vol. 23(1). P. 43-54.
  84. Truswell A.S. Osteopetrosis with syndactyly; a morphological variant of Albers-Schönberg’s disease // The Journal of bone and joint surgery. British volume. 1958. Vol. 40-B (2). P. 209-218.
  85. Tu X., Joeng K.S., Nakayama K.I. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation // Dev. Cell. 2007. Vol. 12(1). P. 113-127.
  86. Urano T., Shiraki M., Ouchi Y. Association of circulating sclerostin levels with fat mass and metabolic disease--related markers in Japanese postmenopausal women // J. Clin. Endocrinol. Metab. 2012. Vol. 97(8). P. 1473-1477.
  87. Ureña P., Ferreira A., Morieux C. PTH/PTHrP receptor mRNA is down-regulated in epiphyseal cartilage growth plate of uraemic rats // Nephrol. Dial. Transplant. 1996. Vol. 11(10). P. 2008-2016.
  88. Van Lierop A.H., Hamdy N.A., Hamersma H. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover // J. Bone Miner. Res. 2011. Vol. 26(12). P. 2804-2811.
  89. Viaene L., Behets G.J., Claes K. Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? // Nephrol. Dial. Transplant. 2013. Vol. 28(12). P. 3024-3030.
  90. Voorzanger-Rousselot N., Goehrig D., Journe F. Increased Dickkopf-1 expression in breast cancer bone metastases // Br. J. Cancer. 2007. Vol. 97(7). P. 964-970.
  91. Voskaridou E., Christoulas D., Plata E. High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density // Horm. Metab. Res. 2012. Vol. 44(12). P. 909-913.
  92. Westendorf J.J., Kahler R.A., Schroeder T.M. Wnt signaling in osteoblasts and bone diseases // Gene. 2004. Vol. 341. P. 19-39.
  93. Winkler D.G., Sutherland M.K., Geoghegan J.C. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist // E.M.B.O. J. 2003. Vol. 22(23). P. 6267-6276.
  94. Wu J., Cohen S.M. Repression of Teashirt marks the initiation of wing development // Development. 2002. Vol. 129(10). P. 2411-2418.
  95. Yadav V.K., Ryu.JH., Suda N. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum // Cell. 2008. Vol. 135(5). P. 825-837.
  96. Yao W., Cheng Z., Pham A. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization // Arthritis Rheum. 2008. Vol. 58(11). P 3485-3497.
  97. Yang Y. Wnt signaling in development and disease // Cell Biosci. 2012. Vol. 2(1). P. 14.
  98. Yuen H.F., Chan Y.P., Cheung W.L. The prognostic significance of BMP-6 signaling in prostate cancer // Mod. Pathol. 2008. Vol. 21(12). P. 1436-1443.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"